Skip to main content

Temporal landscape genetic data indicate an ongoing disruption of gene flow in a relict bird species

Abstract

A major concern in conservation biology today is the loss of genetic diversity in structured populations, which is often a consequence of habitat contraction and restricted gene flow over time. These dynamic biological processes require monitoring with temporal environmental and landscape genetic data. We compared the spatial genetic variation of a relict, umbrella species, the capercaillie (Tetrao urogallus), in two different demographic periods, as represented by older museum specimens (1960–1990) and recent non-invasive samples (2011–2015) collected from the Carpathian Mountains, where habitat connectivity has dramatically decreased in the past decade. Using a combination of species distribution modelling and spatial genetic inference, we analysed how climatic and environmental constraints shaped population structures of the species. Environmental and climate niche models confirmed that relict Carpathian capercaillie populations are temperature sensitive, and they occur in a narrow range of mountain forest habitats at the highest altitudes. We found that the environmental and climatic constraints led to genetically isolated populations, but we also detected clusters that did not match relatively interrupted areas of niche habitats. We observed a similar disruption of gene flow in both periods; however, a stronger signal of genetic structuring in recent samples indicated that the processes negatively affecting connectivity are ongoing. The effective population size of the Carpathian population has declined in recent years, but it has been low for at least the last five decades in the Western Carpathians. This study demonstrates the importance of temporal ecological and genetic data as an effective warning tool for the conservation and management of wildlife species.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Aparicio JM, Ortego J, Cordero PJ (2006) What should we weigh to estimate heterozygosity, alleles or loci? Mol Ecol 15:4659–4665. https://doi.org/10.1111/j.1365-294X.2006.03111.x

    Article  PubMed  CAS  Google Scholar 

  2. Baguette M, Blanchet S, Legrand D et al (2013) Individual dispersal, landscape connectivity and ecological networks. Biol Rev 88:310–326. https://doi.org/10.1111/brv.12000

    Article  PubMed  Google Scholar 

  3. Bálint M, Ujvárosi L, Theissinger K et al (2011) The Carpathians as a major diversity hotspot in Europe. In: Habel JC, Zachos FE (eds) Biodiversity hotspots. Springer, Berlin, pp 189–205

    Chapter  Google Scholar 

  4. Bollmann K, Weibel P, Graf RF (2005) An analysis of central Alpine capercaillie spring habitat at the forest stand scale. For Ecol Manag 215:307–318. https://doi.org/10.1016/J.FORECO.2005.05.019

    Article  Google Scholar 

  5. Bollmann K, Graf RF, Suter W (2011) Quantitative predictions for patch occupancy of capercaillie in fragmented habitats. Ecography (Cop) 34:276–286. https://doi.org/10.1111/j.1600-0587.2010.06314.x

    Article  Google Scholar 

  6. Braunisch V, Segelbacher G, Hirzel AH (2010) Modelling functional landscape connectivity from genetic population structure: a new spatially explicit approach. Mol Ecol 19:3664–3678. https://doi.org/10.1111/j.1365-294X.2010.04703.x

    Article  PubMed  Google Scholar 

  7. Breckheimer I, Haddad NM, Morris WF et al (2014) Defining and evaluating the umbrella species concept for conserving and restoring landscape connectivity. Conserv Biol 28:1584–1593. https://doi.org/10.1111/cobi.12362

    Article  PubMed  Google Scholar 

  8. Brown JL (2014) SDMtoolbox: a python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. Methods Ecol Evol 5:694–700. https://doi.org/10.1111/2041-210X.12200

    Article  Google Scholar 

  9. Butsic V, Munteanu C, Griffiths P et al (2016) The effect of protected areas on forest disturbance in the Carpathian Mountains 1985–2010. Conserv Biol 31:570–580. https://doi.org/10.1111/cobi.12835

    Article  Google Scholar 

  10. Chen C, Durand E, Forbes F, François O (2007) Bayesian clustering algorithms ascertaining spatial population structure: A new computer program and a comparison study. Mol Ecol Notes 7:747–756. https://doi.org/10.1111/j.1471-8286.2007.01769.x

    Article  Google Scholar 

  11. Cheng HH, Crittenden LB (1994) Microsatellite markers for genetic mapping in the chicken. Poult Sci 73:539–546. https://doi.org/10.3382/ps.0730539

    Article  PubMed  CAS  Google Scholar 

  12. Coppes J, Kochs M, Ehrlacher J et al (2015) The challenge of creating a large-scale capercailllie distribution map. Grouse News 50:21–23

    Google Scholar 

  13. Cramp S, Simmons KEL (1980) Handbook of the birds of Europe, the Middle East and North Africa: the birds of the Western Palearctic, vol. 2: Hawks to Bustards. Oxford University Press, Oxford

    Google Scholar 

  14. Do C, Waples RS, Peel D et al (2014) NeEstimator v2: re-implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Mol Ecol Resour 14:209–214. https://doi.org/10.1111/1755-0998.12157

    Article  CAS  Google Scholar 

  15. Draheim HM, Moore JA, Fortin M-J, Scribner KT (2018) Beyond the snapshot: landscape genetic analysis of time series data reveal responses of American black bears to landscape change. Evol Appl 11:1219–1230. https://doi.org/10.1111/eva.12617

    Article  PubMed  PubMed Central  Google Scholar 

  16. Estes-Zumpf WA, Rachlow JL, Waits LP, Warheit KI (2010) Dispersal, gene flow, and population genetic structure in the pygmy rabbit (Brachylagus idahoensis). J Mammal 91:208–219. https://doi.org/10.1644/09-MAMM-A-032R.1

    Article  Google Scholar 

  17. Fedorca M (2016) Cocoşul de munte (Tetrao urogallus) istoricul stidiilor, status de conservare, presiuni şi ameninţări. Fauna 21:77–80

    Google Scholar 

  18. Fedorca A, Russo IRM, Ionescu O et al (2019) Inferring fine-scale spatial structure of the brown bear (Ursus arctos) population in the Carpathians prior to infrastructure development. Sci Rep. https://doi.org/10.1038/s41598-019-45999-y

    Article  PubMed  PubMed Central  Google Scholar 

  19. Fick SE, Hijmans RJ (2017) WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int J Climatol 37:4302–4315. https://doi.org/10.1002/joc.5086

    Article  Google Scholar 

  20. Frankham R, Bradshaw CJA, Brook BW (2014) Genetics in conservation management: revised recommendations for the 50/500 rules, Red List criteria and population viability analyses. Biol. Conserv 170:56–63

    Article  Google Scholar 

  21. Franklin IR (1980) Evolutionary change in small populations. In: Soule ME, Wilcox BA (eds) Conservation biology: an evolutionary—ecological perspective. Sinauer Associates, Sunderland, pp 135–140

    Google Scholar 

  22. Galpern P, Peres-Neto PR, Polfus J, Manseau M (2014) MEMGENE: Spatial pattern detection in genetic distance data. Methods Ecol Evol 5:1116–1120. https://doi.org/10.1111/2041-210X.12240

    Article  Google Scholar 

  23. Gibbs M, Dawson DA, McCamley C et al (1997) Chicken microsatellite markers isolated from libraries enriched for simple tandem repeats. Anim Genet 28:401–417. https://doi.org/10.1111/j.1365-2052.1997.t01-1-00184.x

    Article  PubMed  CAS  Google Scholar 

  24. Habel JC, Husemann M, Finger A et al (2014) The relevance of time series in molecular ecology and conservation biology. Biol Rev 89:484–492. https://doi.org/10.1111/brv.12068

    Article  PubMed  Google Scholar 

  25. Hanski I (2011) Habitat loss, the dynamics of biodiversity, and a perspective on conservation. Ambio 40:248–255. https://doi.org/10.1007/S13280-011-0147-3

    Article  PubMed  PubMed Central  Google Scholar 

  26. Hanski I, Ovaskainen O (2002) Extinction debt at extinction threshold. Conserv Biol 16:666–673. https://doi.org/10.1046/j.1523-1739.2002.00342.x

    Article  Google Scholar 

  27. Harrisson KA, Pavlova A, Amos JN et al (2012) Fine-scale effects of habitat loss and fragmentation despite large-scale gene flow for some regionally declining woodland bird species. Landsc Ecol 27:813–827. https://doi.org/10.1007/s10980-012-9743-2

    Article  Google Scholar 

  28. Hissa R, Saarela S, Rintamäki H et al (1983) Energetics and development of temperature regulation in capercaillie Tetrao urogallus. Physiol Zool 56:142–151. https://doi.org/10.1086/physzool.56.2.30156047

    Article  Google Scholar 

  29. Horváth MB, Martínez-Cruz B, Negro JJ et al (2005) An overlooked DNA source for non-invasive genetic analysis in birds. J Avian Biol 36:84–88. https://doi.org/10.1111/j.0908-8857.2005.03370.x

    Article  Google Scholar 

  30. Irland LC (2008) State failure, corruption, and warfare: challenges for forest policy. J Sustain For 27:189–223. https://doi.org/10.1080/10549810802219963

    Article  Google Scholar 

  31. Jakobsson M, Rosenberg NA (2007) CLUMPP: A cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23:1801–1806. https://doi.org/10.1093/bioinformatics/btm233

    Article  PubMed  CAS  Google Scholar 

  32. Johansson MP, McMahon BJ, Höglund J, Segelbacher G (2012) Amplification success of multilocus genotypes from feathers found in the field compared with feathers obtained from shot birds. Ibis 154:15–20. https://doi.org/10.1111/j.1474-919X.2011.01194.x

    Article  Google Scholar 

  33. Jones AT, Ovenden JR, Wang YG (2016) Improved confidence intervals for the linkage disequilibrium method for estimating effective population size. Heredity 117:217–223. https://doi.org/10.1038/hdy.2016.19

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Kaňuch P, Jarčuška B, Iorgu EI et al (2014) Geographic variation in relict populations: genetics and phenotype of bush-cricket Pholidoptera frivaldskyi (Orthoptera) in Carpathians. J Insect Conserv 18:257–266. https://doi.org/10.1007/s10841-014-9636-6

    Article  Google Scholar 

  35. Keenan K, Mcginnity P, Cross TF et al (2013) DiveRsity: An R package for the estimation and exploration of population genetics parameters and their associated errors. Methods Ecol Evol 4:782–788. https://doi.org/10.1111/2041-210X.12067

    Article  Google Scholar 

  36. Klaus S, Andreev AV, Bergmann H-H et al (1989) Die Auerhühner: Tetrao urogallus und T. urogalloides, 2. Aufl. Die Neue Brehm-Bücherei Bd. 86. Ziemsen, Wittenberg Lutherstadt

    Google Scholar 

  37. Klinga P, Mikoláš M, Zhelev P et al (2015) Genetic differentiation of western capercaillie in the Carpathian Mountains: the importance of post glacial expansions and habitat connectivity. Biol J Linn Soc 116:873–889. https://doi.org/10.1111/bij.12643

    Article  Google Scholar 

  38. Klinga P, Smolko P, Krajmerová D, Paule L (2017) Landscape genetics highlight the importance of sustainable management in European mountain spruce forests: a case study on Western capercaillie. Eur J For Res 136:1041–1050. https://doi.org/10.1007/s10342-017-1034-7

    Article  Google Scholar 

  39. Klinga P, Mikoláš M, Smolko P et al (2019) Considering landscape connectivity and gene flow in the Anthropocene using complementary landscape genetics and habitat modelling approaches. Landsc Ecol 34:521–536. https://doi.org/10.1007/s10980-019-00789-9

    Article  Google Scholar 

  40. Knorn J, Kuemmerle T, Radeloff VC et al (2012a) Forest restitution and protected area effectiveness in post-socialist Romania. Biol Conserv 146:204–212. https://doi.org/10.1016/J.BIOCON.2011.12.020

    Article  Google Scholar 

  41. Knorn J, Kuemmerle T, Radeloff VC et al (2012b) Continued loss of temperate old-growth forests in the Romanian Carpathians despite an increasing protected area network. Environ Conserv 40:182–193. https://doi.org/10.1017/S0376892912000355

    Article  Google Scholar 

  42. Křenová Z, Kindlmann P (2015) Natura 2000—Solution for Eastern Europe or just a good start? The Šumava National Park as a test case. Biol Conserv 186:268–275. https://doi.org/10.1016/J.BIOCON.2015.03.028

    Article  Google Scholar 

  43. Kuemmerle T, Chaskovskyy O, Knorn J et al (2009) Forest cover change and illegal logging in the Ukrainian Carpathians in the transition period from 1988 to 2007. Remote Sens Environ 113:1194–1207. https://doi.org/10.1016/j.rse.2009.02.006

    Article  Google Scholar 

  44. Mateo-Sánchez MC, Balkenhol N, Cushman S et al (2015) Estimating effective landscape distances and movement corridors: comparison of habitat and genetic data. Ecosphere 6:art59. https://doi.org/10.1890/ES14-00387.1s

    Article  Google Scholar 

  45. Meirmans PG, Hedrick PW (2011) Assessing population structure: FST and related measures. Mol Ecol Resour 11:5–18. https://doi.org/10.1111/j.1755-0998.2010.02927.x

    Article  PubMed  Google Scholar 

  46. Mikoláš M, Svitok M, Tejkal M et al (2015) Evaluating forest management intensity on an umbrella species: Capercaillie persistence in central Europe. For Ecol Manag 354:26–34. https://doi.org/10.1016/j.foreco.2015.07.001

    Article  Google Scholar 

  47. Mikoláš M, Svitok M, Bollmann K et al (2017a) Mixed-severity natural disturbances promote the occurrence of an endangered umbrella species in primary forests. For Ecol Manag 405:210–218. https://doi.org/10.1016/J.FORECO.2017.09.006

    Article  Google Scholar 

  48. Mikoláš M, Tejkal M, Kuemmerle T et al (2017b) Forest management impacts on capercaillie (Tetrao urogallus) habitat distribution and connectivity in the Carpathians. Landsc Ecol 32:163–179. https://doi.org/10.1007/s10980-016-0433-3

    Article  Google Scholar 

  49. Mikoláš M, Svitok M, Teodosiu M et al (2019a) Land use planning based on the connectivity of tree species does not ensure the conservation of forest biodiversity. Land Use Policy 83:63–65. https://doi.org/10.1016/J.LANDUSEPOL.2019.01.036

    Article  Google Scholar 

  50. Mikoláš M, Ujházy K, Jasík M et al (2019b) Primary forest distribution and representation in a Central European landscape: results of a large-scale field-based census. For Ecol Manag. https://doi.org/10.1016/j.foreco.2019.117466

    Article  Google Scholar 

  51. Mráz P, Ronikier M (2016) Biogeography of the Carpathians: evolutionary and spatial facets of biodiversity. Biol J Linn Soc 119:528–559. https://doi.org/10.1111/bij.12918

    Article  Google Scholar 

  52. Ortego J, Aguirre MP, Noguerales V, Cordero PJ (2015) Consequences of extensive habitat fragmentation in landscape-level patterns of genetic diversity and structure in the Mediterranean esparto grasshopper. Evol Appl 8:621–632. https://doi.org/10.1111/eva.12273

    Article  PubMed  PubMed Central  Google Scholar 

  53. Pakkala T, Pellikka J, Lindén H (2003) Capercaillie (Tetrao urogallus)—a good candidate for an umbrella species in taiga forests. Wildl Biol 9:309–316

    Article  Google Scholar 

  54. Palstra FP, Ruzzante DE (2008) Genetic estimates of contemporary effective population size: What can they tell us about the importance of genetic stochasticity for wild population persistence? Mol Ecol 17:3428–3447

    Article  Google Scholar 

  55. Park S (2008) Excel Microsatellite Toolkit. Version 3(1):1

    Google Scholar 

  56. Pérez T, Albornoz J, Domínguez A (2002) Phylogeography of chamois (Rupicapra spp.) inferred from microsatellites. Mol Phylogenet Evol 25:524–534. https://doi.org/10.1016/S1055-7903(02)00296-8

    Article  PubMed  CAS  Google Scholar 

  57. Phillips SJ, Dudík M (2008) Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31:161–175. https://doi.org/10.1111/j.0906-7590.2008.5203.x

    Article  Google Scholar 

  58. Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Modell 190:231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026

    Article  Google Scholar 

  59. Piertney SB, Höglund J (2001) Polymorphic microsatellite DNA markers in black grouse (Tetrao tetrix). Mol Ecol Notes 1:303–304. https://doi.org/10.1046/j.1471-8278.2001.00118.x

    Article  CAS  Google Scholar 

  60. Piry S, Luikart G, Cornuet J-M (1999) Computer note. BOTTLENECK: a computer program for detecting recent reductions in the effective size using allele frequency data. J Hered 90:502–503. https://doi.org/10.1093/jhered/90.4.502

    Article  Google Scholar 

  61. Putman AI, Carbone I (2014) Challenges in analysis and interpretation of microsatellite data for population genetic studies. Ecol Evol 4:4399–4428. https://doi.org/10.1002/ece3.1305

    Article  PubMed  PubMed Central  Google Scholar 

  62. R Core Team (2018) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  63. Raymond M, Rousset F (1995) GENEPOP (Version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249. https://doi.org/10.1093/oxfordjournals.jhered.a111573

    Article  Google Scholar 

  64. Regnaut S, Lucas FS, Fumagalli L (2006) DNA degradation in avian faecal samples and feasibility of non-invasive genetic studies of threatened capercaillie populations. Conserv Genet 7:449–453. https://doi.org/10.1007/s10592-005-9023-7

    Article  CAS  Google Scholar 

  65. Richardson JL, Brady SP, Wang IJ, Spear SF (2016) Navigating the pitfalls and promise of landscape genetics. Mol Ecol 25:849–863. https://doi.org/10.1111/mec.13527

    Article  PubMed  Google Scholar 

  66. Ronikier M, Cieślak E, Korbecka G (2008) High genetic differentiation in the alpine plant Campanula alpina Jacq. (Campanulaceae): evidence for glacial survival in several Carpathian regions and long-term isolation between the Carpathians and the Alps. Mol Ecol 17:1763–1775. https://doi.org/10.1111/j.1365-294X.2008.03664.x

    Article  PubMed  CAS  Google Scholar 

  67. Rosenberg NA (2004) DISTRUCT: A program for the graphical display of population structure. Mol Ecol Notes 4:137–138. https://doi.org/10.1046/j.1471-8286.2003.00566.x

    Article  Google Scholar 

  68. Sahlsten J, Thörngren H, Höglund J (2008) Inference of hazel grouse population structure using multilocus data: a landscape genetic approach. Heredity 101:475–482. https://doi.org/10.1038/hdy.2008.94

    Article  PubMed  CAS  Google Scholar 

  69. Saniga M (2003) Ecology of the capercaillie (Tetrao urogallus) and forest management in relation to its protection in the West Carpathians. J For Sci 49:229–239

    Article  Google Scholar 

  70. Schwartz MK, McKelvey KS (2009) Why sampling scheme matters: the effect of sampling scheme on landscape genetic results. Conserv Genet 10:441–452. https://doi.org/10.1007/s10592-008-9622-1

    Article  Google Scholar 

  71. Segelbacher G, Steinbrück G (2001) Bird faeces for sex identification and microsatellite analysis. Vogelwarte 41:139–142

    Google Scholar 

  72. Segelbacher G, Paxton RJ, Steinbruck G et al (2000) Characterization of microsatellites in capercaillie Tetrao urogallus (Aves). Mol Ecol 9:1919–1952

    Article  Google Scholar 

  73. Seibold S, Bässler C, Brandl R et al (2015) Experimental studies of dead-wood biodiversity—a review identifying global gaps in knowledge. Biol Conserv 191:139–149. https://doi.org/10.1016/J.BIOCON.2015.06.006

    Article  Google Scholar 

  74. Speller CF, Nicholas GP, Yang DY (2011) Feather barbs as a good source of mtDNA for bird species identification in forensic wildlife investigations. Investig Genet 2:16. https://doi.org/10.1186/2041-2223-2-16

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Storch I (2000) Conservation status and threats to grouse worldwide: an overview. Wildl Biol 6:195–204. https://doi.org/10.2981/wlb.2000.016

    Article  Google Scholar 

  76. Storch I (2007) Conservation status of grouse worldwide: an update. Wildl Biol 13:5–12

    Article  Google Scholar 

  77. Suter W, Graf RF, Hess R (2002) Capercaillie (Tetrao urogallus) and avian biodiversity: Testing the umbrella-species concept. Conserv Biol 16:778–788. https://doi.org/10.1046/j.1523-1739.2002.01129.x

    Article  Google Scholar 

  78. Thompson PL, Rayfield B, Gonzalez A (2017) Loss of habitat and connectivity erodes species diversity, ecosystem functioning, and stability in metacommunity networks. Ecography 40:98–108. https://doi.org/10.1111/ecog.02558

    Article  Google Scholar 

  79. Thornton D, Zeller K, Rondinini C et al (2016) Assessing the umbrella value of a range-wide conservation network for jaguars (Panthera onca). Ecol Appl 26:1112–1124. https://doi.org/10.1890/15-0602

    Article  PubMed  Google Scholar 

  80. Ujvárosi L, Bálint M, Schmitt T et al (2010) Divergence and speciation in the Carpathians area: patterns of morphological and genetic diversity of the crane fly Pedicia occulta (Diptera: Pediciidae). J N Am Benthol Soc 29:1075–1088. https://doi.org/10.1899/09-099.1

    Article  Google Scholar 

  81. Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICRO-CHECKER: Software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538. https://doi.org/10.1111/j.1471-8286.2004.00684.x

    Article  CAS  Google Scholar 

  82. van Strien MJ, Keller D, Holderegger R et al (2014) Landscape genetics as a tool for conservation planning: predicting the effects of landscape change on gene flow. Ecol Appl 24:327–339. https://doi.org/10.1890/13-0442.1

    Article  PubMed  Google Scholar 

  83. Wandeler P, Hoeck PEA, Keller LF (2007) Back to the future: museum specimens in population genetics. Trends Ecol Evol 22:634–642. https://doi.org/10.1016/j.tree.2007.08.017

    Article  PubMed  Google Scholar 

  84. Waples RS, Do C (2010) Linkage disequilibrium estimates of contemporary Ne using highly variable genetic markers: a largely untapped resource for applied conservation and evolution. Evol Appl 3:244–262. https://doi.org/10.1111/j.1752-4571.2009.00104.x

    Article  PubMed  PubMed Central  Google Scholar 

  85. Waples RS, Yokota M (2007) Temporal estimates of effective population size in species with overlapping generations. Genetics 175:219–233. https://doi.org/10.1534/genetics.106.065300

    Article  PubMed  PubMed Central  Google Scholar 

  86. Warren DL, Seifert SN (2011) Ecological niche modeling in Maxent: the importance of model complexity and the performance of model selection criteria. Ecol Appl 21:335–342. https://doi.org/10.1890/10-1171.1

    Article  PubMed  Google Scholar 

  87. Wegge P, Rolstad J (2017) Climate change and bird reproduction: warmer springs benefit breeding success in boreal forest grouse. Proc R Soc B Biol Sci. https://doi.org/10.1098/rspb.2017.1528

    Article  Google Scholar 

  88. Wilson GA, Rannala B (2003) Bayesian inference of recent migration rates using multilocus genotypes. Genetics 163:1177–1191

    PubMed  PubMed Central  Google Scholar 

  89. Zieliński P, Nadachowska-Brzyska K, Wielstra B et al (2013) No evidence for nuclear introgression despite complete mtDNA replacement in the Carpathian newt (Lissotriton montandoni). Mol Ecol 22:1884–1903. https://doi.org/10.1111/mec.12225

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to A. Tomek (Kraków), Z. Rzońca (Wisla), A.A. Bokotej and I.V. Shydlovskij (Lviv), E.F. Zielinskij (Yasinya), V.M. Prystupa (Rakhiv), M.X. Bylanich and O.M. Bokotej (Uzhhorod), J. Kautman (Bratislava), M. Číž (Sv. Anton), D. Šubová, M. Krupa and P. Hriadeľ (Liptovský Mikuláš), M. Fulín (Košice), T. Kizek (Banská Bystrica), L. Hlôška (Žilina), M. Slaba (Hluboká), L. Rákosy (Cluj), R. Ciobanu (Sibiu), and M. Silaghi and A. Markus (Reghin) for permissions to take samples from their museum and private collections. Thanks are also due to numerous hunters in Slovakia, Ukraine, and Romania for allowing us to take samples from their hunting trophies and taxidermies of capercaillie. The work was financially supported by the Scientific Grant Agency VEGA (Grant No. 2/0077/17) and the Grant Service of the State Forest Enterprise of the Czech Republic (Grant No. 11/2016). MM was supported by the Czech University of Life Sciences, Prague (CIGA No. 20184304) and by the Institutional Project MSMT CZ.02.1.01/0.0/0.0/16_019/0000803. We are also grateful to Rob Morrissey (Branch Scientific Editing) for help with the language to strengthen our manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Peter Klinga.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 1310 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Klinga, P., Mikoláš, M., Delegan, I.V. et al. Temporal landscape genetic data indicate an ongoing disruption of gene flow in a relict bird species. Conserv Genet 21, 329–340 (2020). https://doi.org/10.1007/s10592-020-01253-x

Download citation

Keywords

  • Habitat fragmentation
  • Landscape genetics
  • Species niche modelling
  • Temporal genetic data
  • Wildlife
  • Capercaillie