Skip to main content

Advertisement

Log in

Interpopulational and intrapopulational genetic diversity of the endangered Itasenpara bitterling (Acheilognathus longipinnis) with reference to its demographic history

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

To conserve endangered species, maintenance of both interpopulational and intrapopulational genetic diversity is often required in wild populations. For the Itasenpara bitterling (Acheilognathus longipinnis), its limited number of habitats in three areas of Japan are all threatened. In this study, microsatellite data were obtained from DNA sampled from all three wild populations to evaluate the interpopulational and intrapopulational genetic diversity of A. longipinnis. The genetic uniqueness of each population and genetic differentiation among populations were determined, which are probably due to both spatial and temporal isolation among populations. Both the long-term and contemporary effective population sizes (Ne) were estimated for all populations. In all populations, the presence of historic and recent bottlenecks was estimated. For the population from the Moo River, which has the smallest habitat area and the highest number of individuals, Bayesian skyline plots demonstrated a drastic decrease in effective population size, likely caused by anthropogenic habitat modification in the past. The population from the Kiso River demonstrated a similar trend in genetic demography to the population from the Moo River. In contrast, a gradual decline in Ne was observed in the population from the Yodo River, which continued until recently. The populations from the Moo and Kiso rivers are deemed to be critically endangered due to the loss of heterozygosity. Therefore, conservation efforts are needed to maintain and promote genetic diversity in each population, both through habitat conservation and captive breeding efforts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Arai R, Fujikawa H, Nagata Y (2007) Four new subspecies of Acheilognathus bitterling (Cyprinidae: Acheilognathinae) from Japan. Bull Natl Mus Nat Sci Ser A Suppl 1:1–28

    Google Scholar 

  • Avise JC (2000) Phylogeography: the history and formation of species. Harvard University Press, Cambridge

    Google Scholar 

  • Beerli P (2006) Comparison of Bayesian and maximum-likelihood inference of population genetic parameters. Bioinformatics 22:341–345

    CAS  PubMed  Google Scholar 

  • Belkhir K, Borsa P, Chikhi N, Raufaste N, Bonhomme F (1996–2004) GENETIX 4.05, Logiciel Sous Windows TM Pour la Génétique des Populations. Laboratoire Genome, Populations, Interactions, CNRS UMR 5000, Université de Montpellier II, Montpellier, France

  • Benton TG, Vickery JA, Wilson JD (2003) Farmland biodiversity: is habitat heterogeneity the key? Trends Ecol Evol 18:182–188

    Google Scholar 

  • Blanco-Pastor JL, Fernández-Mazuecos M, Vargas P (2013) Past and future demographic dynamics of alpine species: limited genetic consequences despite dramatic range contraction in a plant from the Spanish Sierra Nevada. Mol Ecol 22:4177–4195

    CAS  PubMed  Google Scholar 

  • Carvalho DC, Beheregaray LB (2018) Conservation genetics of the threatened catfish Conorhynchos conirostris (Siluriformes: incertae sedis), an evolutionary relict endemic to the São Francisco River Basin, Brazil. Conserv Genet 19:1223–1230

    Google Scholar 

  • Chino Y, Okuma T (1994) A study on weirs under Edo era’s flood control system—in relation to the development of weir techniques. Hist Stud Civ Eng 14:93–108 (in Japanese with English Abstract)

    Google Scholar 

  • Himi City (2005) Waterfront people: exploring the history of the Fusenomizuumi. Himi City Museum, Himi (in Japanese)

    Google Scholar 

  • City Himi (2008) Restoration project report of natural monument, Itasenpara bitterling, Part 3. Board of Education in Himi City, Himi (in Japanese)

    Google Scholar 

  • Cornuet JM, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144:2001–2004

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dawson DA, Burland TM, Douglas A, Le Comber SC, Bradshaw M (2003) Isolation of microsatellite loci in the freshwater fish, the bitterling Rhodeus sericeus (Teleostei: Cyprinidae). Mol Ecol Notes 3:199–202

    CAS  Google Scholar 

  • DeWoody JA, Avise JC (2000) Microsatellite variation in marine, freshwater and anadromous fishes compared with other animals. J Fish Biol 56:461–473

    CAS  Google Scholar 

  • Earl DA, vonHoldt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361

    Google Scholar 

  • Estoup A, Jarne P, Cornuet JM (2002) Homoplasy and mutation model at microsatellite loci and their consequences for population genetics analysis. Mol Ecol 11:1591–1604

    CAS  PubMed  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol 14:2611–2620

    CAS  PubMed  Google Scholar 

  • Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567

    PubMed  Google Scholar 

  • Frankham R (1996) Relationship of genetic variation to population size in wildlife. Conserv Biol 10:1500–1508

    Google Scholar 

  • Frankham R, Ballou JD, Briscoe DA (2002) Introduction to conservation genetics. Cambridge University Press, Cambridge

    Google Scholar 

  • Hardy OJ, Vekemans X (2002) SPAGeDi: a versatile computer program to analyze spatial genetic structure at the individual or population levels. Mol Ecol Note 2:618–620

    Google Scholar 

  • Hasegawa K, Kanao S, Miyazaki Y, Mukai T, Nakajima J, Takaku K, Taniguchi Y (2019) Acheilognathus longipinnis. The IUCN Red List of Threatened Species 2019. http://www.iucnredlist.org. Accessed 27 September 2019

  • Ikeya K, Sagawa S, Ohara K (2012) The efforts of the ex situ conservation of endangered deep body bitterling in Nobi-Plain, Japan. Reintroduction 2:121–128 (in Japanese)

    Google Scholar 

  • Iseki H (1988) Geomorphological history of the Kiso River basin. J Geogr 97:69–79 (in Japanese)

    Google Scholar 

  • IUCN (2008) Wildlife in a changing world: an analysis of the 2008 IUCN red list of threatened species

  • IUCN (2011) Global re-introduction perspectives: 2011

  • Japan Ministry of the Environment (2003) Threatened wildlife of Japan, red data book, 2nd edn. Japan Wildlife Research Center, Tokyo (in Japanese)

    Google Scholar 

  • Jeon HB, An J, Kweon SM, Kim S, Yu JN, Kim BJ, Kawase S, Suk HY (2016) Development of novel microsatellite loci and analyses of genetic diversity in the endangered Tanakia somjinensis. Biochem Syst Ecol 66:344–350

    CAS  Google Scholar 

  • Kalinowski ST (2005) HP-Rare: a computer program for performing rarefaction on measures of allelic diversity. Mol Ecol Notes 5:187–189

    CAS  Google Scholar 

  • Kamibayashi Y (1993) On the social background of Kisogawa river improvement in the dawn of Meiji Japan, planed by J. de Rijke using modern civil engineering. Hist Stud Civ Eng 13:375–386 (in Japanese with English Abstract)

    Google Scholar 

  • Kawanabe H (1987) Freshwater fishes in Japan. Tokai University Press, Tokyo (in Japanese)

    Google Scholar 

  • Kitanishi S, Nishio M, Uehara K, Ogawa R, Yokoyama T, Edo K (2013) Patterns of genetic diversity of mitochondrial DNA within captive populations of the endangered itasenpara bitterling: implications for a reintroduction program. Environ Biol Fish 96:567–572

    Google Scholar 

  • Kubota H, Watanabe K, Suguro N, Tabe M, Umezawa K, Watanabe S (2010) Genetic population structure and management units of the endangered Tokyo bitterling, Tanakia tanago (Cyprinidae). Conserv Genet 11:2343–2355

    Google Scholar 

  • Kume M, Onoda Y, Negishi JN, Sagawa S, Nagayama S, Kayaba Y (2012) Feeding damage by exotic species, nutria (Myocastor coypus), to unionid mussels in a floodplain water-body of the Kiso River, Japan. Biol Inland Waters 27:41–47

    Google Scholar 

  • Lehmann T, Hawley A, Grebert H, Collins FH (1998) The effective population size of Anopheles gambiae in Kenya: implications for population structure. Mol Biol Evol 15:264–276

    CAS  PubMed  Google Scholar 

  • Luikart G, Allendorf FW, Cornuet J-M, Sherwin WB (1998) Distribution of allele frequency distributions provide a test for recent population bottlenecks. J Hered 89:238–247

    CAS  PubMed  Google Scholar 

  • Lynch M, Ritland K (1999) Estimation of pairwise relatedness with molecular markers. Genetics 152:1753–1766

    CAS  PubMed  PubMed Central  Google Scholar 

  • Matsuura S, Fujii M (1993) A study on the administration of river works at the beginning of Meiji era. Hist Stud Civ Eng 13:145–160 (in Japanese)

    Google Scholar 

  • Morimoto J, Yoshida H (2005) Dynamic changes of native Rhododendron colonies in the urban fringe of Kyoto city in Japan: detecting the long-term dynamism for conservation of secondary nature. Landsc Urban Plan 70:195–204

    Google Scholar 

  • Narum SR (2006) Beyond Bonferroni: less conservative analyses for conservation genetics. Conserv Genet 7:783–787

    CAS  Google Scholar 

  • Nei M (1975) Molecular population genetics and evolution. North Holland Publishing Company, New York

    Google Scholar 

  • Nishio M, Kawamoto T, Kawakami R, Edo K, Yamazaki Y (2015) Life history and reproductive ecology of the endangered Itasenpara bitterling Acheilognathus longipinnis (Cyprinidae) in the Himi region, central Japan. J Fish Biol 87:616–633

    CAS  PubMed  Google Scholar 

  • Nishio M, Tanaka H, Tanaka D, Kawakami R, Edo K, Yamazaki Y (2016) Managing water levels in rice paddies to conserve the Itasenpara host mussel, Unio douglasiae nipponensis. J Shellfish Res 35:1–7

    Google Scholar 

  • Nishio M, Edo K, Yamazaki Y (2017) Paddy management for potential conservation of endangered Itasenpara bitterling via zooplankton abundance. Agric Ecosyst Environ 247:166–171

    Google Scholar 

  • Ogawa R (2008) Acheilognathus longipinnis: a symbol fish of flood plains with natural hydrometeorological environments. Jpn J Ichthyol 55:144–148 (in Japanese with English Abstract)

    Google Scholar 

  • Ohta T, Kimura M (1973) A model of mutation appropriate to estimate the number of electrophoretically detectable alleles in a finite population. Genet Res 22:201–204

    CAS  PubMed  Google Scholar 

  • Okazaki T, Watanabe M, Inamura O, Kitagawa T, Tabe M, Nagata Y (2006) Genetic relationships among regional populations of the deepbodied bitterling, Acheilognathus longipinnis, inferred from mitochondrial DNA analysis. DNA Polymorph 14:276–280 (in Japanese)

    CAS  Google Scholar 

  • Piry S, Luikart G, Cornuet JM (1999) BOTTLENECK: a computer program for detecting recent reductions in the effective population size using allele frequency data. J Hered 90:502–503

    Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using mulilocus genotype data. Genetics 155:945–959

    CAS  Google Scholar 

  • Reed DH, Frankham R (2003) Correlation between fitness and genetic diversity. Conserv Biol 17:230–237

    Google Scholar 

  • Rice WR (1989) Analyzing tables of statistical test. Evolution 43:223–225

    PubMed  Google Scholar 

  • Roman J, Palumbi SR (2003) Whales before whaling in the North Atlantic. Science 310:508–510

    Google Scholar 

  • Shirai Y, Ikeda S, Tajima S (2009) Isolation and characterization of new microsatellite markers for rose bitterlings, Rhodeus ocellatus. Mol Ecol Res 9:1031–1033

    CAS  Google Scholar 

  • Soulé ME, Wilcox BA (1980) Conservation biology: an evolutionary-ecological perspective. Sinauer Associates Inc, Massachusetts

    Google Scholar 

  • Takehana Y, Nagai N, Matsuda M, Tsuchiya K, Sakaizumi M (2003) Geographic variation and diversity of the cytochrome b gene in Japanese wild populations of medaka, Oryzias latipes. Zool Sci 20:1279–1291

    CAS  Google Scholar 

  • Tilman D, Fargione J, Wolff B, D’Antonio C, Dobson A, Howarth R, Schindler D, Schlesinger WH, Simberloff D, Swackhamer D (2001) Forecasting agriculturally driven global environmental change. Science 292:281–284

    CAS  PubMed  Google Scholar 

  • Tominaga K, Nakajima J, Watanabe K (2016) Cryptic divergence and phylogeography of the pike gudgeon Pseudogobio esocinus (Teleostei: Cyprinidae): a comprehensive case of freshwater phylogeography in Japan. Ichthyol Res 63:79–93

    Google Scholar 

  • Uehara K (2016) Itasenpara: Habitat restoration and reintroduction project. In: Watanabe K, Mori S (eds) The challenges of freshwater fish conservation: concepts and practice for restoration of aquatic biodiversity. Tokai University Press, Hiratsuka, pp 67–85

    Google Scholar 

  • van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) Micro-checker: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538

    Google Scholar 

  • Vrijenhoek RC (1998) Conservation genetics of freshwater fish. J Fish Biol 53(Suppl A):394–412

    Google Scholar 

  • Wang J (2012) Computationally efficient sibship and parentage assignment from multilocus marker data. Genetics 191:183–194

    CAS  PubMed  PubMed Central  Google Scholar 

  • Willoughby JR, Sundaram M, Wijayawardena BK, Kimble SJA, Ji Y, Fernandez NB, Antonides JD, Lamb MC, Marra NJ, DeWoody JA (2015) The reduction of genetic diversity in threatened vertebrates and new recommendations regarding IUCN conservation rankings. Biol Conserv 191:495–503

    Google Scholar 

  • Yamazaki Y, Goto A, Nishida M (2003) Mitochondrial DNA sequence divergence between two cryptic species of Lethenteron, with reference to an improved identification technique. J Fish Biol 62:591–609

    CAS  Google Scholar 

  • Yamazaki Y, Nakamura T, Nishio M (2010) Genetic population structures of the Itasenpara bitterling, Acheilognathus longipinnis, in the Toyama and Osaka regions. Jpn J Ichthyol 57:143–148 (in Japanese with English Abstract)

    Google Scholar 

  • Yamazaki Y, Nakamura T, Sasaki M, Nakano S, Nishio M (2014) Decreasing genetic diversity in wild and captive populations of endangered Itasenpara bitterling (Acheilognathus longipinnis) in the Himi region, central Japan, and recommendations for conservation. Conserv Genet 15:921–932

    Google Scholar 

  • Yamazaki Y, Ikeya K, Goto T, Chimura Y (2017) Population viability analysis predicts decreasing genetic diversity in ex situ populations of the Itasenpara bitterling Acheilognathus longipinnis from the Kiso River, Japan. Ichthyol Res 64:54–63

    Google Scholar 

  • Yoshii T, Ozaki M (1986) History and perspective of water resources development in the Yodo River basin. J Jpn Soc Irrig Drain Reclam 54:603–610

    Google Scholar 

Download references

Acknowledgements

We are grateful to members of the Himi Collaborative Research Laboratory, Gifu World Fresh Water Aquarium, and Research Institute of Environment, Agriculture and Fisheries, Osaka for their support rearing fish and completing experiments. We also thank Mr. S. S. Satoh for his assistance of the drawing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuji Yamazaki.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamazaki, Y., Uehara, K., Ikeya, K. et al. Interpopulational and intrapopulational genetic diversity of the endangered Itasenpara bitterling (Acheilognathus longipinnis) with reference to its demographic history. Conserv Genet 21, 55–64 (2020). https://doi.org/10.1007/s10592-019-01232-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-019-01232-x

Keywords

Navigation