Ongoing recovery of a brown bear population from a century-old severe bottleneck: insights from population genetic and spatially explicit analyses

  • Peeter Anijalg
  • Jaanus Remm
  • Egle Tammeleht
  • Marju Keis
  • Harri Valdmann
  • Urmas SaarmaEmail author
Research Article


By the beginning of the twentieth century, many brown bear populations in Europe were on the brink of extinction due to relentless hunting pressure and habitat loss. The situation was critical also in Estonia, where in the 1920s the population went through a severe demographic bottleneck. Thanks to the protective measures implemented in the 1930s, the population started to recover. However, the process has been slow, especially in the western and southern areas of the country. To study the effects of the demographic bottleneck, we analysed 216 brown bear samples from throughout their main range in Estonia. In combination with widely used methods of population genetics, a recently developed spatially explicit analysis (distribution of residual dissimilarity, DResD) was also applied. Three genetic clusters were revealed, of which two were most likely founded by the survivors of the bottleneck. The DResD analysis revealed several contact zones near the Estonian-Russian border, suggesting that the third cluster was influenced by gene flow from the neighbouring population in Russia. The DResD analysis revealed also a male biased movement corridor along the forested south-north axis in the central part of Estonia. In comparison to other European populations, the genetic diversity of the Estonian population is relatively low and is comparable with other populations that have gone through a severe bottleneck. This work has important implications for brown bear conservation and highlights once again the dangers of excessive hunting.


Bottleneck Brown bear Estonia Hunting Microsatellites Population genetics Spatial genetics Ursus arctos 



We thank Riinu Rannap, Ann Kraut, Inga Jõgisalu and Peep Männil for their generous help. We are grateful to three anonymous reviewers for helpful suggestions. This work was supported by the institutional research funding (Grant IUT20-32) from the Estonian Ministry of Education and Research, and by European Union through the European Regional Development Fund by the program 3.2.0802.11-0043.

Supplementary material

10592_2019_1229_MOESM1_ESM.xlsx (54 kb)
Supplementary material 1 (XLSX 54 kb)
10592_2019_1229_MOESM2_ESM.docx (14 kb)
Supplementary material 2 (DOCX 14 kb)
10592_2019_1229_MOESM3_ESM.tif (567 kb)
Supplementary material 3 (TIFF 567 kb)
10592_2019_1229_MOESM4_ESM.tif (399 kb)
Supplementary material 4 (TIFF 400 kb)
10592_2019_1229_MOESM5_ESM.jpeg (78 kb)
Supplementary material 5 (JPEG 78 kb)
10592_2019_1229_MOESM6_ESM.tif (217 kb)
Supplementary material 6 (TIFF 218 kb)
10592_2019_1229_MOESM7_ESM.tif (469 kb)
Supplementary material 7 (TIFF 469 kb)
10592_2019_1229_MOESM8_ESM.tif (465 kb)
Supplementary material 8 (TIFF 465 kb)


  1. Anijalg P, Ho SYW, Davison J et al (2018) Large-scale migrations of brown bears in Eurasia and to North America during the late pleistocene. J Biogeogr 45:394–405. CrossRefGoogle Scholar
  2. Aul J, Ling H, Paaver K (1957) Eesti NSV imetajad. Eesti Riiklik Kirjastus, TallinnGoogle Scholar
  3. Barlow A, Cahill JA, Hartmann S et al (2018) Partial genomic survival of cave bears in living brown bears. Nat Ecol Evol 2:1563–1570. CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bidon T, Janke A, Fain SR et al (2014) Brown and polar bear Y chromosomes reveal extensive male-biased gene flow within brother lineages. Mol Biol Evol 31:1353–1363. CrossRefPubMedGoogle Scholar
  5. Boitani L, Alvarez F, Anders O et al (2015) Key actions for large carnivore populations in Europe. Report to DG Environment. European Commission, BruxellesGoogle Scholar
  6. Bojarska K, Selva N (2012) Spatial patterns in brown bear Ursus arctos diet: the role of geographical and environmental factors. Mammal Rev 42:120–143. CrossRefGoogle Scholar
  7. Chapron G, Kaczensky P, Linnell JDC et al (2014) Recovery of large carnivores in Europe’s modern human-dominated landscapes. Science 346:1517–1519. CrossRefPubMedGoogle Scholar
  8. Coulon A (2010) Genhet: an easy-to-use R function to estimate individual heterozygosity. Mol Ecol Resour 10:167–169. CrossRefPubMedGoogle Scholar
  9. Danilov PI, Tumanov IL, Rusakov OS (1993) The north-west of European Russia. In: Vaisfeld MA, Chestin IE (eds) Game animals of Russia and adjacent countries and their environment. Nauka, Moscow, pp 21–37Google Scholar
  10. Davison J, Ho SYW, Bray SC et al (2011) Late-quaternary biogeographic scenarios for the brown bear (Ursus arctos), a wild mammal model species. Quat Sci Rev 30:418–430. CrossRefGoogle Scholar
  11. Earl DA, vonHoldt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361CrossRefGoogle Scholar
  12. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620CrossRefGoogle Scholar
  13. Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587PubMedPubMedCentralGoogle Scholar
  14. Frosch C, Dutsov A, Zlatanova D et al (2014) Noninvasive genetic assessment of brown bear population structure in Bulgarian mountain regions. Mamm Biol 79:268–276. CrossRefGoogle Scholar
  15. Goudet J (2001) FSTAT, a program to estimate and test gene diversities and fixation indices, version 2.9.3. Updated from Goudet (1995)
  16. Goudet J (2005) HIERFSTAT, a package for R to compute and test hierarchical F-statistics. Mol Eco Notes 5:184–186. CrossRefGoogle Scholar
  17. Greenwood PJ (1980) Mating systems, philopatry and dispersal in birds and mammals. Anim Behav 28:1140–1162. CrossRefGoogle Scholar
  18. Guillot G, Leblois R, Coulon A, Frantz AC (2009) Statistical methods in spatial genetics. Mol Ecol 18:4734–4756. CrossRefPubMedGoogle Scholar
  19. Hailer F, Kutschera VE, Hallström BM, Klassert D, Fain SR, Leonard JA, Arnason U, Janke A (2012) Nuclear genomic sequences reveal that polar bears are an old and distinct bear lineage. Science 336:344–347. CrossRefPubMedGoogle Scholar
  20. Hedrick PW (1983) Genetics of populations. Science Books International, BostonGoogle Scholar
  21. Hell P, Find’o S (1999) Status and management of the brown bear in Slovakia. In: Status survey and conservation action plan bears. IUCN, Gland, pp 96–100Google Scholar
  22. Hewitt G (2000) The genetic legacy of the quaternary ice ages. Nature 405:907–913. CrossRefPubMedGoogle Scholar
  23. Hindrikson M, Remm J, Männil P et al (2013) Spatial genetic analyses reveal cryptic population structure and migration patterns in a continuously harvested grey wolf (Canis lupus) population in North-Eastern Europe. PLoS ONE 8(9):e75765. CrossRefPubMedPubMedCentralGoogle Scholar
  24. Hindrikson M, Remm J, Pilot M et al (2017) Wolf population genetics in Europe: a systematic review, meta-analysis and suggestions for conservation and management. Biol Rev 92:1601–1629. CrossRefPubMedGoogle Scholar
  25. Holderegger R, Giulio MD (2010) The genetic effects of roads: a review of empirical evidence. Basic Appl Ecol 11:522–531. CrossRefGoogle Scholar
  26. Jackson ND, Fahrig L (2011) Relative effects of road mortality and decreased connectivity on population genetic diversity. Biol Conserv 144:3143–3148. CrossRefGoogle Scholar
  27. Jombart T, Devillard S, Dufour AB, Pontier D (2008) Revealing cryptic spatial patterns in genetic variability by a new multivariate method. Heredity 101:92–103CrossRefGoogle Scholar
  28. Jombart T, Devillard S, Balloux F (2010) Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet 11:94CrossRefGoogle Scholar
  29. Kaal M (1980) Pruunkaru. Valgus, TallinnGoogle Scholar
  30. Karamanlidis AA, Drosopoulou E, de Gabriel Hernando M et al (2010) Noninvasive genetic studies of brown bears using power poles. Eur J Wildl Res 56:693–702. CrossRefGoogle Scholar
  31. Karamanlidis AA, Paunović M, Ćirović D et al (2014a) Population genetic parameters of brown bears in western Serbia: implications for research and conservation. Ursus 25:34–43. CrossRefGoogle Scholar
  32. Karamanlidis AA, Stojanov A, de Gabriel Hernando M et al (2014b) Distribution and genetic status of brown bears in FYR macedonia: implications for conservation. Acta Theriol 59:119–128. CrossRefGoogle Scholar
  33. Karamanlidis AA, Skrbinšek T, de Gabriel Hernando M et al (2018) History-driven population structure and asymmetric gene flow in a recovering large carnivore at the rear-edge of its European range. Heredity 120:168–182. CrossRefPubMedGoogle Scholar
  34. Keis M, Remm J, Ho SYW et al (2013) Complete mitochondrial genomes and a novel spatial genetic method reveal cryptic phylogeographical structure and migration patterns among brown bears in north-western Eurasia. J Biogeogr 40:915–927CrossRefGoogle Scholar
  35. Kocijan I, Galov A, Ćetković H et al (2011) Genetic diversity of dinaric brown bears (Ursus arctos) in Croatia with implications for bear conservation in Europe. Mamm Biol 76:615–621. CrossRefGoogle Scholar
  36. Kopatz A, Eiken HG, Aspi J et al (2014) Admixture and gene flow from Russia in the recovering Northern European brown bear (Ursus arctos). PLoS ONE 9(5):e97558. CrossRefPubMedPubMedCentralGoogle Scholar
  37. Korsten M, Ho SYW, Davison J et al (2009) Sudden expansion of a single brown bear maternal lineage across northern continental Eurasia after the last ice age: a general demographic model for mammals? Mol Ecol 18:1963–1979CrossRefGoogle Scholar
  38. Lam NS-N (1983) Spatial interpolation methods: a review. Am Cartogr 10:129–150. CrossRefGoogle Scholar
  39. Leonard JA, Wayne RK, Cooper A (2000) Population genetics of Ice Age brown bears. P Natl Acad Sci USA 97:1651–1654. CrossRefGoogle Scholar
  40. Lõugas L, Maldre L (2000) The history of theriofauna in the Eastern Baltic region. Folia Theriol Est 5:86–100Google Scholar
  41. McLellan BN, Proctor MF, Huber D, Michel S (2017) Ursus arctos (amended version of 2017 assessment). The IUCN Red List of Threatened Species 2017: e.T41688A121229971. Downloaded 12 Feb 2019
  42. McRae BH (2007) Isolation by resistance. Evolution 60:1551–1561. CrossRefGoogle Scholar
  43. Meirmans PG (2012) The trouble with isolation by distance. Mol Ecol 21:2839–2846. CrossRefPubMedGoogle Scholar
  44. Morin PA, Manaster C, Mesnick SL, Holland R (2009) Normalization and binning of historical and multi-source microsatellite data: overcoming the problems of allele size shift with allelogram. Mol Ecol Res 9:1451–1455. CrossRefGoogle Scholar
  45. Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New YorkCrossRefGoogle Scholar
  46. Paaver K (1965) Formirovanije teriofaunõ i izmentšivost mlekopitajuštših Pribaltiki v golotsene. Estonian Academy of Sciences, TallinnGoogle Scholar
  47. Paetkau D, Shields GF, Strobeck C (1998) Gene flow between insular, coastal and interior populations of brown bears in Alaska. Mol Ecol 7:1283–1292. CrossRefPubMedGoogle Scholar
  48. Park SDE (2001) Trypanotolerance in West African cattle and the population genetic effects of selection. PhD Thesis Univ DublinGoogle Scholar
  49. Pazhetnov VS (1993) The Centre of European Russia. In: Vaisfeld MA, Chestin IE (eds) Game animals of Russia and adjacent countries and their environment. Nauka, Moscow, pp 51–60Google Scholar
  50. Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28:2537–2539. CrossRefPubMedPubMedCentralGoogle Scholar
  51. Pebesma EJ (2004) Multivariable geostatistics in S: the gstat package. Comput Geosci 30:683–691CrossRefGoogle Scholar
  52. Pebesma EJ, Bivand RS (2005) Classes and methods for spatial data in R. R News 5:9–13Google Scholar
  53. Pérez T, Vázquez F, Naves J et al (2009) Non-invasive genetic study of the endangered Cantabrian brown bear (Ursus arctos). Conserv Genet 10:291–301. CrossRefGoogle Scholar
  54. Piry S, Luikart G, Cornuet J-M (1999) Computer note. BOTTLENECK: a computer program for detecting recent reductions in the effective size using allele frequency data. J Hered 90:502–503. CrossRefGoogle Scholar
  55. Plumer L, Keis M, Remm J et al (2016) Wolves recolonizing islands: genetic consequences and implications for conservation and management. PLoS ONE 11:e0158911. CrossRefPubMedPubMedCentralGoogle Scholar
  56. Plumer L, Talvi T, Männil P, Saarma U (2018) Assessing the roles of wolves and dogs in livestock predation with suggestions for mitigating human–wildlife conflict and conservation of wolves. Conserv Genet 19:665–672. CrossRefGoogle Scholar
  57. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedPubMedCentralGoogle Scholar
  58. Rousset F (2008) GENEPOP’007: a complete re-implementation of the GENEPOP software for Windows and Linux. Mol Ecol Resour 8:103–106CrossRefGoogle Scholar
  59. Saarma U, Kojola I (2007) Matrilineal genetic structure of the brown bear population in Finland. Ursus 18(1):30–37CrossRefGoogle Scholar
  60. Saarma U, Ho SYW, Pybus OG et al (2007) Mitogenetic structure of brown bears (Ursus arctos L.) in northeastern Europe and a new time frame for the formation of European brown bear lineages. Mol Ecol 16:401–413CrossRefGoogle Scholar
  61. Schregel J, Eiken HG, Grøndahl FA et al (2015) Y chromosome haplotype distribution of brown bears (Ursus arctos) in Northern Europe provides insight into population history and recovery. Mol Ecol 24:6041–6060. CrossRefPubMedGoogle Scholar
  62. Schregel J, Remm J, Eiken HG et al (2018) Multi-level patterns in population genetics: variogram series detects a hidden isolation-by-distance-dominated structure of Scandinavian brown bears Ursus arctos. Methods Ecol Evol. CrossRefGoogle Scholar
  63. Servinski M, Kivilaid M, Tischler G (2018) Republic of Estonia 100. Statistical Album, Statistics Estonia, TallinnGoogle Scholar
  64. Skrbinšek T, Jelenčič M, Waits LP et al (2012) Using a reference population yardstick to calibrate and compare genetic diversity reported in different studies: an example from the brown bear. Heredity 109:299–305. CrossRefPubMedPubMedCentralGoogle Scholar
  65. Støen O-G, Zedrosser A, Sæbø S, Swenson JE (2006) Inversely density-dependent natal dispersal in brown bears Ursus arctos. Oecologia 148:356–364CrossRefGoogle Scholar
  66. Straka M, Paule L, Ionescu O et al (2012) Microsatellite diversity and structure of Carpathian brown bears (Ursus arctos): consequences of human caused fragmentation. Conserv Genet 13:153–164CrossRefGoogle Scholar
  67. Sunnucks P, Balkenhol N (2015) Incorporating landscape genetics into road ecology. In: Handbook of road ecology. Wiley-Blackwell, Sussex, pp 110–118Google Scholar
  68. Swenson JE, Wabakken P, Sandegren F et al (1995) The near extinction and recovery of brown bears in Scandinavia in relation to the bear management policies of Norway and Sweden. Wildl Biol 1:11–25. CrossRefGoogle Scholar
  69. Swenson JE, Gerstl N, Dahle B, Zedrosser A (2000) Action plan for the conservation of the brown bear in Europe (Ursus arctos). Strasbourg Cedex, Council of Europe. Nature and environment, StrasbourghGoogle Scholar
  70. Taberlet P, Fumagalli L, Wust-Saucy AG, Cosson JF (1998) Comparative phylogeography and postglacial colonization routes in Europe. Mol Ecol 7:453–464. CrossRefPubMedGoogle Scholar
  71. Tammeleht E, Remm J, Korsten M et al (2010) Genetic structure in large, continuous mammal populations: the example of brown bears in Northwestern Eurasia. Mol Ecol 19:5359–5370. CrossRefPubMedGoogle Scholar
  72. Tammeleht E, Kull A, Pärna K (2019) Assessing the importance of protected areas in human-dominated lowland for brown bear (Ursus arctos) winter denning. Mammal Res. CrossRefGoogle Scholar
  73. Vaisfeld MA (1993) The north-east of European Russia. In: Vaisfeld MA, Chestin IE (eds) Game animals of Russia and adjacent countries and their environment. Nauka, Moscow, pp 37–51Google Scholar
  74. Valdmann H, Saarma U, Karis A (2001) The brown bear population in Estonia: current status and requirements for management. Ursus 12:31–36Google Scholar
  75. Valière N (2002) GIMLET: a computer program for analysing genetic individual identification data. Mol Ecol Notes 2:377–379Google Scholar
  76. van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) micro-checker: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538. CrossRefGoogle Scholar
  77. Veeroja R, Männil P (2018) Status of game populations in Estonia and proposal for hunting in 2018. Estonian Environment Agency, Tallinn (In Estonian) Google Scholar
  78. Vulla E, Hobson KA, Korsten M et al (2009) Carnivory is positively correlated with latitude among omnivorous mammals: evidence from brown bears, badgers and pine martens. Ann Zool Fenn 46:395–415. CrossRefGoogle Scholar
  79. Waits L, Taberlet P, Swenson JE et al (2000) Nuclear DNA microsatellite analysis of genetic diversity and gene flow in the Scandinavian brown bear (Ursus arctos). Mol Ecol 9:421–431CrossRefGoogle Scholar
  80. Waples RS (2006) A bias correction for estimates of effective population size based on linkage disequilibrium at unlinked gene loci. Conserv Genet 7:167–184. CrossRefGoogle Scholar
  81. Waples RS, Do C (2008) ldne: a program for estimating effective population size from data on linkage disequilibrium. Mol Ecol Resour 8:753–756. CrossRefPubMedGoogle Scholar
  82. Xenikoudakis G, Ersmark E, Tison J-L et al (2015) Consequences of a demographic bottleneck on genetic structure and variation in the Scandinavian brown bear. Mol Ecol 24:3441–3454. CrossRefPubMedGoogle Scholar
  83. Zachos FE, Otto M, Unici R et al (2008) Evidence of a phylogeographic break in the Romanian brown bear (Ursus arctos) population from the Carpathians. Mamm Biol 73:93–101. CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Zoology, Institute of Ecology and Earth SciencesUniversity of TartuTartuEstonia

Personalised recommendations