Skip to main content

Advertisement

Log in

Isolation by a hydroelectric dam induces minimal impacts on genetic diversity and population structure in six fish species

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

Reduced connectivity created by artificial barriers can influence the genetic integrity of isolated subpopulations by reducing local population sizes and altering patterns of gene flow. We investigated the genetic impacts of one such barrier, the Prairie du Sac dam, Wisconsin, USA, using microsatellite data from six fish species with varying life history traits sampled above and below the dam. Contrary to many past studies in other systems, we did not detect any significant differences in genetic diversity between populations found above and below the Prairie du Sac dam. Our results also revealed low genetic differentiation (FST = 0–0.008) between populations above and below the dam for all species. In fact, we found that more genetic variation was partitioned among sampling years than between above and below dam populations for all but one of the species. Results from coalescent simulations designed to model our study system indicated that the genetic impacts of the dam will likely be detectable approximately 40–60 generations after the dam was constructed, and that it is possible to largely mitigate these impacts with a fish passage strategy that facilitates a migration rate of ≥ 1% between above and below dam populations. In summary, our findings suggest the genetic impacts of dams can be relatively minimal on short time scales, and that fish passage strategies can significantly reduce genetic impacts if designed appropriately.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Acton A (2016) 31-MW Prairie du Sac facility endures test of time. http://www.hydroworld.com/articles/hr/print/volume-35/issue-2/articles/31-mw-prairie-du-sac-facility-endures-test-of-time.html. Accessed 10 Jan 2016

  • Allendorf FW, Luikart G (2009) Conservation and the genetics of populations. Wiley, Hoboken

    Google Scholar 

  • Bart HL Jr, Clements MD, Blanton RE, Piller KR, Hurley DL (2010) Discordant molecular and morphological evolution in buffalofishes (Actinopterygii: Catostomidae). Mol Phylogenet Evol 56:808–820

    Article  PubMed  Google Scholar 

  • Barthel B, Cooke S, Svec J, Suski C, Bunt C, Phelan F, Philipp D (2008) Divergent life histories among smallmouth bass Micropterus dolomieu inhabiting a connected river–lake system. J Fish Biol 73:829–852

    Article  Google Scholar 

  • Becker CG (1983) Fishes of Wisconsin. University of Wisconsin Press, Madison

    Google Scholar 

  • Bednarek AT (2001) Undamming rivers: a review of the ecological impacts of dam removal. J Environ Manag 27:803–814

    Article  CAS  Google Scholar 

  • Bessert ML, Ortí G (2008) Genetic effects of habitat fragmentation on blue sucker populations in the upper Missouri River (Cycleptus elongatus Lesueur, 1918). Conserv Genet 9:821–832

    Article  Google Scholar 

  • Bessert ML, Sitzman C, Orti G (2007) Avoiding paralogy: diploid loci for allotetraploid blue sucker fish (Cycleptus elongatus, Catostomidae). Conserv Genet 8:995–998

    Article  CAS  Google Scholar 

  • Billington N, Brooks RC, Heidinger RC (1997) Frequency of natural hybridization between saugers and walleyes in the Peoria Pool of the Illinois River, as determined by morphological and electrophoretic criteria. N Am J Fish Manag 17:220–224

    Article  Google Scholar 

  • Blanchet S, Rey O, Etienne R, Lek S, Loot G (2010) Species-specific responses to landscape fragmentation: implications for management strategies. Evol Appl 3:291–304

    Article  PubMed  PubMed Central  Google Scholar 

  • Borer SO, Miller LM, Kapuscinski AR (1999) Microsatellites in walleye Stizostedion vitreum. Mol Ecol 8:336–338

    CAS  PubMed  Google Scholar 

  • Botsford LW, Brittnacher JG (1998) Viability of Sacramento River winter-run chinook salmon. Conserv Biol 12:65–79

    Article  Google Scholar 

  • Catalano MJ, Bozek MA, Pellett TD (2007) Effects of dam removal on fish assemblage structure and spatial distributions in the Baraboo River, Wisconsin. N Am J Fish Manag 27:519–530

    Article  Google Scholar 

  • Caudill CC, Daigle WR, Keefer ML, Boggs CT, Jepson MA, Burke BJ, Zabel RW, Bjornn TC, Peery CA (2007) Slow dam passage in adult Columbia River salmonids associated with unsuccessful migration: delayed negative effects of passage obstacles or condition-dependent mortality? Can J Fish Aquat Sci 64:979–995

    Article  Google Scholar 

  • Cheng F, Li W, Castello L, Murphy BR, Xie SG (2015) Potential effects of dam cascade on fish: lessons from the Yangtze River. Rev Fish Biol Fish 25:569–585

    Article  Google Scholar 

  • Cochran PA, Lyons J, Gehl MR (2003) Parasitic attachments by overwintering silver lampreys, Ichthyomyzon unicuspis, and chestnut lampreys, Ichthyomyzon castaneus. Environ Biol Fishes 68:65–71

    Article  Google Scholar 

  • Colbourne JK, Neff BD, Wright JM, Gross MR (1996) DNA fingerprinting of bluegill sunfish (Lepomis macrochirus) using (GT) n microsatellites and its potential for assessment of mating success. Can J Fish Aquat Sci 53:342–349

    Article  CAS  Google Scholar 

  • Cooke SJ, Schreer JF, Philipp DP, Weatherhead PJ (2003) Nesting activity, parental care behavior, and reproductive success of smallmouth bass, Micropterus dolomieu, in an unstable thermal environment. J Therm Biol 28:445–456

    Article  Google Scholar 

  • Deiner K, Garza JC, Coey R, Girman DJ (2007) Population structure and genetic diversity of trout (Oncorhynchus mykiss) above and below natural and man-made barriers in the Russian River, California. Conserv Genet 8:437–454

    Article  Google Scholar 

  • Do C, Waples RS, Peel D, Macbeth GM, Tillett BJ, Ovenden JR (2014) NeEstimator v2: re-implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Mol Ecol Resour 14:209–214

    Article  CAS  PubMed  Google Scholar 

  • Earl DA, vonHoldt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361

    Article  Google Scholar 

  • Eldridge WH, Bacigalupi MD, Adelman IR, Miller LM, Kapuscinski AR (2002) Determination of relative survival of two stocked walleye populations and resident natural-origin fish by microsatellite DNA parentage assignment. Can J Fish Aquat Sci 59:282–290

    Article  Google Scholar 

  • Euclide PT, Flores NM, Wargo MJ, Kilpatrick CW, Marsden JE (2017) Lack of genetic population structure of slimy sculpin in a large, fragmented lake. Ecol Freshw Fish 27:699–709

    Article  Google Scholar 

  • Ewers RM, Didham RK (2006) Confounding factors in the detection of species responses to habitat fragmentation. Biol Rev Camb Philos Soc 81:117–142

    Article  PubMed  Google Scholar 

  • Excoffier L, Foll M (2011) fastsimcoal: a continuous-time coalescent simulator of genomic diversity under arbitrarily complex evolutionary scenarios. Bioinformatics 27:1332–1334

    Article  CAS  PubMed  Google Scholar 

  • Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567

    Article  PubMed  Google Scholar 

  • Goudet J (1995) FSTAT (Version 1.2): a computer program to calculate F-statistics. J Hered 86:485–486

    Article  Google Scholar 

  • Gouskov A, Vorburger C (2016) River fragmentation and fish population structure: a comparison of three Swiss midland rivers. Freshw Sci 35:689–700

    Article  Google Scholar 

  • Hall CJ, Jordaan A, Frisk MG (2011) The historic influence of dams on diadromous fish habitat with a focus on river herring and hydrologic longitudinal connectivity. Landsc Ecol 26:95–107

    Article  Google Scholar 

  • Hansen MM, Nielsen EE, Mensberg KL (1997) The problem of sampling families rather than populations: relatedness among individuals in samples of juvenile brown trout Salmo trutta L.. Mol Ecol 6:469–474

    Article  CAS  Google Scholar 

  • Haxton T, Nienhuis S, Punt K, Baker T (2015) Assessing walleye movement among reaches of a large, fragmented river. N Am J Fish Manag 35:537–550

    Article  Google Scholar 

  • Heath DD, Busch C, Kelly J, Atagi DY (2002) Temporal change in genetic structure and effective population size in steelhead trout (Oncorhynchus mykiss). Mol Ecol 11:197–214

    Article  CAS  PubMed  Google Scholar 

  • Heggenes J, Røed K (2006) Do dams increase genetic diversity in brown trout (Salmo trutta)? Microgeographic differentiation in a fragmented river. Ecol Freshw Fish 15:366–375

    Article  Google Scholar 

  • Hodgson JR, Schindler DE, He X (1998) Homing tendency of three piscivorous fishes in a north temperate lake. Trans Am Fish Soc 127:1078–1081

    Article  Google Scholar 

  • Horreo JL, Martinez JL, Ayllon F, Pola IG, Monteoliva JA, Heland M, Garcia-Vazquez E (2011) Impact of habitat fragmentation on the genetics of populations in dendritic landscapes. Freshw Biol 56:2567–2579

    Article  Google Scholar 

  • Hubisz MJ, Falush D, Stephens M, Pritchard JK (2009) Inferring weak population structure with the assistance of sample group information. Mol Ecol Resour 9:1322–1332

    Article  PubMed  PubMed Central  Google Scholar 

  • Jager HI, Parsley MJ, Cech JJ, McLaughlin RL, Forsythe PS, Elliott RF, Pracheil BM (2016) Reconnecting fragmented sturgeon populations in North American rivers. Fisheries 41:140–148

    Article  Google Scholar 

  • Jones OR, Wang J (2010) COLONY: a program for parentage and sibship inference from multilocus genotype data. Mol Ecol Resour 10:551–555

    Article  PubMed  Google Scholar 

  • Jorde PE, Ryman N (1996) Demographic genetics of brown trout (Salmo trutta) and estimation of effective population size from temporal change of allele frequencies. Genetics 143:1369–1381

    CAS  PubMed  PubMed Central  Google Scholar 

  • Junge C, Museth J, Hindar K, Kraabol M, Vollestad LA (2014) Assessing the consequences of habitat fragmentation for two migratory salmonid fishes. Aquat Conserv 24:297–311

    Article  Google Scholar 

  • Kalinowski ST (2005) hp-rare 1.0: a computer program for performing rarefaction on measures of allelic richness. Mol Ecol Notes 5:187–189

    Article  CAS  Google Scholar 

  • Kamvar ZN, Tabima JF, Grünwald NJ (2014) Poppr: an R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ 2:e281

    Article  PubMed  PubMed Central  Google Scholar 

  • Kapuscinski KL, Sloss BL, Farrell JM (2013) Genetic population structure of muskellunge in the Great Lakes. Trans Am Fish Soc 142:1075–1089

    Article  Google Scholar 

  • Keenan K, McGinnity P, Cross TF, Crozier WW, Prodöhl PA (2013) diveRsity: an R package for the estimation and exploration of population genetics parameters and their associated errors. Methods Ecol Evol 4:782–788

    Article  Google Scholar 

  • Knights BC, Vallazza JM, Zigler SJ, Dewey MR (2002) Habitat and movement of lake sturgeon in the upper Mississippi River system, USA. Trans Am Fish Soc 131:507–522

    Article  Google Scholar 

  • Kopelman NM, Mayzel J, Jakobsson M, Rosenberg NA, Mayrose I (2015) Clumpak: a program for identifying clustering modes and packaging population structure inferences across K. Mol Ecol Resour 15:1179–1191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kornis MS, Weidel BC, Powers SM, Diebel MW, Cline TJ, Fox JM, Kitchell JF (2015) Fish community dynamics following dam removal in a fragmented agricultural stream. Aquat Sci 77:465–480

    Article  CAS  Google Scholar 

  • Landguth EL, Cushman SA, Schwartz MK, McKelvey KS, Murphy M, Luikart G (2010) Quantifying the lag time to detect barriers in landscape genetics. Mol Ecol 19:4179–4191

    Article  CAS  PubMed  Google Scholar 

  • Lyons J (2005) Fish assemblage structure, composition, and biotic integrity of the Wisconsin River. In: Rinne JN, Hughes RM, Calamusso B (eds) Historical changes in the large river fish assemblages of the Americas. American Fisheries Society, American Fisheries Society Symposium, pp 345–363

  • Malloy TP, Van den Bussche RA, Coughlin WD, Echelle AA (2000) Isolation and characterization of microsatellite loci in smallmouth bass, Micropterus dolomieu (Teleostei: Centrarchidae), and cross-species amplification in spotted bass, M-punctulatus. Mol Ecol 9:1946–1948

    Article  CAS  PubMed  Google Scholar 

  • Maruyama T, Fuerst PA (1985) Population bottlenecks and nonequilibrium models in population genetics. II. Number of alleles in a small population that was formed by a recent bottleneck. Genetics 111:675–689

    CAS  PubMed  PubMed Central  Google Scholar 

  • McLaughlin RL, Porto L, Noakes DLG, Baylis JR, Carl LM, Dodd HR, Goldstein JD, Hayes DB, Randall RG (2006) Effects of low-head barriers on stream fishes: taxonomic affiliations and morphological correlates of sensitive species. Can J Fish Aquat Sci 63:766–779

    Article  Google Scholar 

  • McQuown E, Gall GA, May B (2002) Characterization and inheritance of six microsatellite loci in lake sturgeon. Trans Am Fish Soc 131:299–307

    Article  CAS  Google Scholar 

  • Meixler MS, Bain MB, Walter MT (2009) Predicting barrier passage and habitat suitability for migratory fish species. Ecol Model 220:2782–2791

    Article  Google Scholar 

  • Neraas LP, Spruell P (2001) Fragmentation of riverine systems: the genetic effects of dams on bull trout (Salvelinus confluentus) in the Clark Fork River system. Mol Ecol 10:1153–1164

    Article  CAS  PubMed  Google Scholar 

  • Palsbøll PJ, Berube M, Allendorf FW (2007) Identification of management units using population genetic data. Trends Ecol Evolut 22:11–16

    Article  Google Scholar 

  • Palstra FP, Ruzzante DE (2008) Genetic estimates of contemporary effective population size: what can they tell us about the importance of genetic stochasticity for wild population persistence? Mol Ecol 17:3428–3447

    Article  PubMed  Google Scholar 

  • Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Raymond HL (1988) Effects of hydroelectric development and fisheries enhancement on spring and summer chinook salmon and steelhead in the Columbia River basin. N Am J Fish Manag 8:1–24

    Article  Google Scholar 

  • Reid SM, Wilson CC, Carl LM, Zorn TG (2008) Species traits influence the genetic consequences of river fragmentation on two co-occurring redhorse (Moxostoma) species. Can J Fish Aquat Sci 65:1892–1904

    Article  CAS  Google Scholar 

  • Ridgway MS, Shuter BJ (1996) Effects of displacement on the seasonal movements and home range characteristics of smallmouth bass in Lake Opeongo. N Am J Fish Manag 16:371–377

    Article  Google Scholar 

  • Rieman BE, Allendorf F (2001) Effective population size and genetic conservation criteria for bull trout. N Am J Fish Manag 21:756–764

    Article  Google Scholar 

  • Rousset F (2008) genepop’007: a complete re-implementation of the genepop software for Windows and Linux. Mol Ecol Resour 8:103–106

    Article  PubMed  Google Scholar 

  • Ryman N, Palm S (2006) POWSIM: a computer program for assessing statistical power when testing for genetic differentiation. Mol Ecol Notes 6:600–602

    Article  Google Scholar 

  • Santucci VJ, Gephard SR, Pescitelli SM (2005) Effects of multiple low-head dams on fish, macroinvertebrates, habitat, and water quality in the Fox River, Illinois. N Am J Fish Manag 25:975–992

    Article  Google Scholar 

  • Seyoum S, Barthel BL, Tringali MD, Davis MC, Schmitt SL, Bellotti PS, Porak WF (2013) Isolation and characterization of eighteen microsatellite loci for the largemouth bass, Micropterus salmoides, and cross amplification in congeneric species. Conserv Genet Resour 5:697–701

    Article  Google Scholar 

  • Smith SCF, Colombo RE, Thomas T, Keeney DB (2019) Dissimilar effects of low-head dams on the genetic structure of riverine fishes. Freshw Sci 38:92–102

    Article  Google Scholar 

  • Stamford M, Taylor E (2005) Population subdivision and genetic signatures of demographic changes in arctic grayling (Thymallus arcticus) from an impounded watershed. Can J Fish Aquat Sci 62:2548–2559

    Article  CAS  Google Scholar 

  • Stepien CA, Murphy DJ, Strange RM (2007) Broad- to fine-scale population genetic patterning in the smallmouth bass Micropterus dolomieu across the Laurentian Great Lakes and beyond: an interplay of behaviour and geography. Mol Ecol 16:1605–1624

    Article  CAS  PubMed  Google Scholar 

  • Stepien CA, Karsiotis SI, Sullivan TJ, Klymus KE (2017) Population genetic structure and comparative diversity of smallmouth bass Micropterus dolomieu: congruent patterns from two genomes. J Fish Biol 90:2125–2147

    Article  CAS  PubMed  Google Scholar 

  • Tranah GJ, Agresti JJ, May B (2001) New microsatellite loci for suckers (Catostomidae): primer homology in Catostomus, Chasmistes, and Deltistes. Mol Ecol Resour 1:55–60

    Article  CAS  Google Scholar 

  • Vera-Escalona I, Habit E, Ruzzante DE (2015) Echoes of a distant time: effects of historical processes on contemporary genetic patterns in Galaxias platei in Patagonia. Mol Ecol 24:4112–4128

    Article  PubMed  Google Scholar 

  • Vera-Escalona I, Senthivasan S, Habit E, Ruzzante DE (2018) Past, present, and future of a freshwater fish metapopulation in a threatened landscape. Conserv Biol 32:849–859

    Article  PubMed  Google Scholar 

  • Wang LZ, Infante D, Lyons J, Stewart J, Cooper A (2011) Effects of dams in river networks on fish assemblages in non-impoundment sections of rivers in Michigan and Wisconsin, USA. River Res Appl 27:473–487

    Article  CAS  Google Scholar 

  • Waples RS (1998) Separating the wheat from the chaff: patterns of genetic differentiation in high gene flow species. J Hered 89:438–450

    Article  Google Scholar 

  • Waples RS (2006) A bias correction for estimates of effective population size based on linkage disequilibrium at unlinked gene loci. Conserv Genet 7:167

    Article  Google Scholar 

  • Waples RS, Antao T, Luikart G (2014) Effects of overlapping generations on linkage disequilibrium estimates of effective population size. Genetics 197:769-U603

    Article  Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    CAS  PubMed  Google Scholar 

  • Welsh AB, Blumberg M, May B (2003) Identification of microsatellite loci in lake sturgeon, Acipenser fulvescens, and their variability in green sturgeon, A. medirostris. Mol Ecol Resour 3:47–55

    Article  CAS  Google Scholar 

  • Wirth T, Saint-Laurent R, Bernatchez L (1999) Isolation and characterization of microsatellite loci in the walleye (Stizostedion vitreum), and cross-species amplification within the family Percidae. Mol Ecol 8:1960–1962

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto S, Morita K, Koizumi I, Maekawa K (2004) Genetic differentiation of white-spotted charr (Salvelinus leucomaenis) populations after habitat fragmentation: spatial-temporal changes in gene frequencies. Conserv Genet 5:529–538

    Article  CAS  Google Scholar 

  • Zigler SJ, Dewey MR, Knights BC, Runstrom AL, Steingraeber MT (2003) Movement and habitat use by radio-tagged paddlefish in the upper Mississippi River and tributaries. N Am J Fish Manag 23:189–205

    Article  Google Scholar 

Download references

Acknowledgements

This project was funded by the Alliant Energy Prairie du Sac Aquatic Resources Enhancement Fund. We would like to thank the Wisconsin Department of Natural Resources for overseeing the field work associated with this project and providing in-kind contributions. We would also like to thank Loren Miller and Peter Euclide for providing extensive reviews of this paper before submission. Any use of trade, product, or company name is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wesley A. Larson.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruzich, J., Turnquist, K., Nye, N. et al. Isolation by a hydroelectric dam induces minimal impacts on genetic diversity and population structure in six fish species. Conserv Genet 20, 1421–1436 (2019). https://doi.org/10.1007/s10592-019-01220-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-019-01220-1

Keywords

Navigation