Skip to main content
Log in

Distinctiveness, speciation and demographic history of the rare endemic conifer Juniperus erectopatens in the eastern Qinghai-Tibet Plateau

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

The unique geography and climate of the Qinghai-Tibet plateau (QTP) have impacted the formation of species in this area, with a large number of relatively young endemic species associated with the uplift of the QTP and Quaternary climatic changes. In our study, we used two chloroplast DNA fragments and seven nuclear genes to investigate the population genetic structure, species divergence and demographic history of two QTP endemic species, Juniperus erectopatens and J. microsperma as well as their close relatives, J. sabina and J. semiglobosa. Furthermore, we assessed the correlation between their divergence and the historical environmental changes of the QTP. *BEAST analysis revealed that a clade containing J. erectopatens and J. microsperma separated from the clade containing J. sabina and J. semiglobosa about 2.72 million years ago (Mya), whereas the divergence between J. erectopatens and J. microsperma occurred ~ 0.64 Mya. In contrast, the Isolation and Migration model suggested that J. erectopatens diverged from J. microsperma due to geographic isolation during the early to middle Pleistocene about 1.24 Mya, which corresponds to the Quaternary climate oscillations. Approximate Bayesian computation (ABC) suggested that J. erectopatens underwent a population expansion ~ 726 thousand years ago (Kya) followed by a decline ~ 188 Kya. These results suggest that the Quaternary climate oscillations had a profound impact on the demographic history of the QTP endemic J. erectopatens as well as on the divergence between J. erectopatens and J. microsperma. Furthermore, they suggest that some QTP endemic woody species might be younger than previously thought.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adams RP (1999) Systematics of multi-seeded eastern hemisphere Juniperus based on leaf essential oils and RAPD DNA fingerprinting. Biochem Syst Ecol 27:709–725

    CAS  Google Scholar 

  • Adams RPSAE (2013) The multi-seeded, entire leaf taxa of Juniperus section Sabina: inclusion of Juniperus microsperma. Phytologia 95:118–121

    Google Scholar 

  • Adams RP (2014) Junipers of the world: the genus Juniperus. Trafford Publishing, Bloomington, IN

    Google Scholar 

  • Adams RP, Schwarzbach AE (2013) Phylogeny of Juniperus using nrDNA and four cpDNA regions. Phytologia 95:179–187

    Google Scholar 

  • April J, Hanner RH, Dioncôté AM, Bernatchez L (2013) Glacial cycles as an allopatric speciation pump in north-eastern American freshwater fishes. Mol Ecol 22:409–422

    CAS  PubMed  Google Scholar 

  • Bandelt HJ, Forster P, Röhl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37–48

    CAS  PubMed  Google Scholar 

  • Beaumont MA (2010) Approximate bayesian computation in evolution and ecology. Annu Rev Ecol Evol Syst 41:379–406

    Google Scholar 

  • Bouckaert R, Heled J, Kühnert D, Vaughan T, Wu CH, Xie D, Suchard MA, Rambaut A, Drummond AJ (2014) BEAST 2: a software platform for bayesian evolutionary analysis. PLoS Comput Biol 10:e1003537

    PubMed  PubMed Central  Google Scholar 

  • Cain ML, Milligan BG, Strand AE (2000) Long-distance seed dispersal in plant populations. Am J Bot 87:1217–1227

    CAS  PubMed  Google Scholar 

  • Cheng W-C, Fu L-K, Cheng C-Y (1975) Gymnospermae sinicae. Acta Phytotax Sin 13:56–89

    Google Scholar 

  • Cornuet JM, Ravigné V, Estoup A (2010) Inference on population history and model checking using DNA sequence and microsatellite data with the software DIYABC (v1.0). BMC Bioinform 11:401

    Google Scholar 

  • Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and high-performance computing. Nat Methods 9:772

    CAS  PubMed  PubMed Central  Google Scholar 

  • Doyle JJ (1987) A rapid DNA isolation procedure for small amounts of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  • Du FK, Peng XL, Liu JQ, Lascoux M, Hu FS, Petit RJ (2011) Direction and extent of organelle DNA introgression between two spruce species in the Qinghai-Tibetan Plateau. New Phytol 192:1024–1033

    CAS  PubMed  Google Scholar 

  • Earl DA, Vonholdt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361

    Google Scholar 

  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797

    CAS  PubMed  PubMed Central  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    CAS  PubMed  Google Scholar 

  • Excoffier L, Laval G, Schneider S (2005) Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol Bioinform Online 1:47–50

    CAS  Google Scholar 

  • Fan L, Zheng H, Milne RI, Zhang L, Mao K (2018) Strong population bottleneck and repeated demographic expansions of Populus adenopoda (Salicaceae) in subtropical China. Ann Bot 121:665–679

    PubMed  PubMed Central  Google Scholar 

  • Farjon A (2005) A monograph of Cupressaceae and Sciadopitys. Royal Botanic Gardens, Kew, Kew

    Google Scholar 

  • Favre A, Päckert M, Pauls SU, Jähnig SC, Uhl D, Michalak I, Muellner-Riehl AN (2015) The role of the uplift of the Qinghai-Tibetan Plateau for the evolution of Tibetan biotas. Biol Rev Camb Philos Soc 90:236–253

    PubMed  Google Scholar 

  • Fu L, Yu Y, Farjon A (1999) Cupressaceae. Flora China 4:62–77

    Google Scholar 

  • Gillespie RG, Baldwin BG, Waters JM, Fraser CI, Nikula R, Roderick GK (2012) Long-distance dispersal: a framework for hypothesis testing. Trends Ecol Evol 27:47–56

    PubMed  Google Scholar 

  • Grant PR, Grant BR (2009) The secondary contact phase of allopatric speciation in Darwin’s finches. Proc Natl Acad Sci 106:20141–20148

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grant BR, Grant PR (2015) Simulating secondary contact in allopatric speciation: an empirical test of premating isolation. Biol J Lin Soc 76:545–556

    Google Scholar 

  • Heled J, Drummond AJ (2010) Bayesian inference of species trees from multilocus data. Mol Biol Evol 27:570–580

    CAS  PubMed  Google Scholar 

  • Hewitt G (2000) The genetic legacy of the quaternary ice ages. Nature 405:907

    CAS  PubMed  Google Scholar 

  • Hey J (2010) Isolation with migration models for more than two populations. Mol Biol Evol 27:905

    CAS  PubMed  Google Scholar 

  • Hey J, Nielsen R (2004) Multilocus methods for estimating population sizes, migration rates and divergence time, with applications to the divergence of Drosophila pseudoobscura and D. persimilis. Genetics 167:747–760

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hoskin CJ, Higgie M, McDonald KR, Moritz C (2005) Reinforcement drives rapid allopatric speciation. Nature 437:1353

    CAS  PubMed  Google Scholar 

  • Hubisz MJ, Falush D, Stephens M, Pritchard JK (2010) Inferring weak population structure with the assistance of sample group information. Mol Ecol Resour 9:1322–1332

    Google Scholar 

  • IUCN I (2012) Red list categories and criteria: version 3.1. IUCN, Gland and Cambridge

    Google Scholar 

  • Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23:1801–1806

    CAS  PubMed  Google Scholar 

  • Jia DR, Abbott RJ, Liu TL, Mao KS, Bartish IV, Liu JQ (2012) Out of the Qinghai-Tibet Plateau: evidence for the origin and dispersal of Eurasian temperate plants from a phylogeographic study of Hippophaë rhamnoides (Elaeagnaceae). New Phytol 194:1123–1133

    PubMed  Google Scholar 

  • Körner C, Spehn E (2002) Mountain biodiversity: a global assessment. Parthenon, London

    Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lande R (1980) Genetic variation and phenotypic evolution during allopatric speciation. Am Nat 116:463–479

    Google Scholar 

  • Li C, Wen S, Chang C, Wang F, Cheng P, Li P (1979) Discussion on the period, amplitude and type of the uplift of the Qinghai-Xizang Plateau. Sci Sin 22:1314–1328

    Google Scholar 

  • Li J, Shi Y, Li B (1995) Uplift of the Qinghai-Xizang (Tibet) plateau and global change. Lanzhou University Press, Lanzhou

    Google Scholar 

  • Li Z, Zou J, Mao K, Lin K, Li H, Liu J, Kallman T, Lascoux M (2012) Population genetic evidence for complex evolutionary histories of four high altitude juniper species in the Qinghai-Tibetan Plateau. Evolution 66:831–845

    PubMed  Google Scholar 

  • Li L, Abbott RJ, Liu B, Sun Y, Li L, Zou J, Wang X, Miehe G, Liu J (2013) Pliocene intraspecific divergence and Plio-Pleistocene range expansions within Picea likiangensis (Lijiang spruce), a dominant forest tree of the Qinghai-Tibet Plateau. Mol Ecol 22:5237–5255

    CAS  PubMed  Google Scholar 

  • Librado P, Rozas J (2009) Dnasp v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452

    CAS  PubMed  Google Scholar 

  • Lischer HE, Excoffier L (2012) PGDSpider: an automated data conversion tool for connecting population genetics and genomics programs. Bioinformatics 28:298–299

    CAS  PubMed  Google Scholar 

  • Liu J, Tian B (2007) Origin, evolution, and systematics of Himalaya endemic genera. Newsl Himal Bot 40:20–27

    Google Scholar 

  • Liu J-Q, Gao T-G, Chen Z-D, Lu A-M (2002) Molecular phylogeny and biogeography of the Qinghai-Tibet Plateau endemic Nannoglottis (Asteraceae). Mol Phylogenet Evol 23:307–325

    CAS  PubMed  Google Scholar 

  • Liu JQ, Wang YJ, Wang AL, Hideaki O, Abbott RJ (2006) Radiation and diversification within the LigulariaCremanthodiumParasenecio complex (Asteraceae) triggered by uplift of the Qinghai-Tibetan Plateau. Mol Phylogenet Evol 38:31–49

    CAS  PubMed  Google Scholar 

  • Liu JQ, Sun YS, Xue-Jun GE, Gao LM, Qiu YX (2012) Phylogeographic studies of plants in China: advances in the past and directions in the future. J Syst Evol 50:267–275

    Google Scholar 

  • Liu B, Abbott RJ, Lu Z, Tian B, Liu J (2014a) Diploid hybrid origin of Ostryopsis intermedia (Betulaceae) in the Qinghai-Tibet Plateau triggered by quaternary climate change. Mol Ecol 23:3013–3027

    CAS  PubMed  Google Scholar 

  • Liu JQ, Duan YW, Hao G, Xue-Jun GE, Sun H (2014b) Evolutionary history and underlying adaptation of alpine plants on the Qinghai-Tibet Plateau. J Syst Evol 52:241–249

    Google Scholar 

  • Lukowsky A, Marchwat M, Sterry W, Gellrich S (2014) Genetic diversity, demographical history and conservation aspects of the endangered yew tree Taxus contorta (syn. Taxus fuana) in Pakistan. Tree Genet Genomes 10:653–665

    Google Scholar 

  • Luo X, Hu Q, Zhou P, Zhang D, Wang Q, Abbott RJ, Liu J (2017) Chasing ghosts: allopolyploid origin of Oxyria sinensis (Polygonaceae) from its only diploid congener and an unknown ancestor. Mol Ecol 26:3037–3049

    CAS  PubMed  Google Scholar 

  • Mao K, Hao G, Liu J, Adams RP, Milne RI (2010) Diversification and biogeography of Juniperus (Cupressaceae): variable diversification rates and multiple intercontinental dispersals. New Phytol 188:254–272

    CAS  PubMed  Google Scholar 

  • Meng HH, Su T, Gao XY, Li J, Jiang XL, Sun H, Zhou ZK (2017) Warm–cold colonization: response of oaks to uplift of the Himalaya–Hengduan Mountains. Mol Ecol 26:3276–3294

    CAS  PubMed  Google Scholar 

  • Merckx VS, Hendriks KP, Beentjes KK, Mennes CB, Becking LE, Peijnenburg KT, Afendy A, Arumugam N, de Boer H, Biun A (2015) Evolution of endemism on a young tropical mountain. Nature 524:347

    CAS  PubMed  Google Scholar 

  • Nathan R, Katul GG, Horn HS, Thomas SM, Oren R, Avissar R, Pacala SW, Levin SA (2002) Mechanisms of long-distance dispersal of seeds by wind. Nature 418:409

    CAS  PubMed  Google Scholar 

  • Nevado B, Contreras-Ortiz N, Hughes C, Filatov DA (2018) Pleistocene glacial cycles drive isolation, gene flow and speciation in the high-elevation Andes. New Phytol 219:779–793

    PubMed  Google Scholar 

  • Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D (2006) Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet 38:904

    CAS  PubMed  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Qiu YX, Fu CX, Comes HP (2011) Plant molecular phylogeography in China and adjacent regions: tracing the genetic imprints of quaternary climate and environmental change in the world’s most diverse temperate flora. Mol Phylogenet Evol 59:225–244

    PubMed  Google Scholar 

  • Renner SS (2016) Available data point to a 4-km-high Tibetan Plateau by 40 Ma, but 100 molecular-clock papers have linked supposed recent uplift to young node ages. J Biogeogr 43:1479–1487

    Google Scholar 

  • Santos T, Tellería JL, Virgós E (1999) Dispersal of Spanish Juniper Juniperus thurifera by birds and mammals in a fragmented landscape. Ecography 22:193–204

    Google Scholar 

  • Shang HY, Li ZH, Dong M, Adams RP, Miehe G, Opgenoorth L, Mao KS (2015) Evolutionary origin and demographic history of an ancient conifer (Juniperus microsperma) in the Qinghai-Tibetan Plateau. Sci Rep 5:10216

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shi Y (1999) Uplift of the Qinghai-Xizang (Tibetan) Plateau and East Asia environmental change during late Cenozoic. Acta Geogr Sin 54:20–28

    Google Scholar 

  • Shi Y, Li J, Li B (1998) Uplift and environmental changes of Qinghai-Tibetan Plateau in the Late Cenozoic. Guangdong Science and Technology Press, Guangzhou

    Google Scholar 

  • Stephens M, Donnelly P (2003) A comparison of bayesian methods for haplotype reconstruction from population genotype data. Am J Hum Genet 73:1162–1169

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sun B-N, Wu J-Y, Liu Y-SC, Ding S-T, Li X-C, Xie S-P, Yan D-F, Lin Z-C (2011) Reconstructing Neogene vegetation and climates to infer tectonic uplift in western Yunnan, China. Palaeogeogr Palaeoclimatol Palaeoecol 304:328–336

    Google Scholar 

  • Sun Y, Wang A, Wan D, Wang Q, Liu J (2012) Rapid radiation of Rheum (Polygonaceae) and parallel evolution of morphological traits. Mol Phylogenet Evol 63:150–158

    PubMed  Google Scholar 

  • Sun Y, Abbott RJ, Li L, Li L, Zou J, Liu J (2014) Evolutionary history of Purple cone spruce (Picea purpurea) in the Qinghai-Tibet Plateau: homoploid hybrid origin and Pleistocene expansion. Mol Ecol 23:343–359

    CAS  PubMed  Google Scholar 

  • Tajima F (1983) Evolutionary relationship of DNA sequences in finite populations. Genetics 105:437–460

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tang LZ, Wang LY, Cai ZY, Zhang TZ, Ci HX, Lin GH, Su JP, Liu JQ (2010) Allopatric divergence and phylogeographic structure of the plateau zokor (Eospalax baileyi), a fossorial rodent endemic to the Qinghai-Tibetan Plateau. J Biogeogr 37:657–668

    Google Scholar 

  • Wang X-R, Szmidt AE, Savolainen O (2001) Genetic composition and diploid hybrid speciation of a high mountain pine, Pinus densata, native to the Tibetan Plateau. Genetics 159:337–346

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Abbott RJ, Zheng W, Chen P, Wang Y, Liu J (2009a) History and evolution of alpine plants endemic to the Qinghai-Tibetan Plateau: Aconitum gymnandrum (Ranunculaceae). Mol Ecol 18:709–721

    PubMed  Google Scholar 

  • Wang Y, Susanna A, Von Raabstraube E, Milne R, Liu J (2009b) Island-like radiation of Saussurea (Asteraceae: Cardueae) triggered by uplifts of the Qinghai-Tibetan Plateau. Biol J Lin Soc 97:893–903

    Google Scholar 

  • Wang P, Yao H, Gilbert KJ, Lu Q, Hao Y, Zhang Z, Wang N (2018) Glaciation-based isolation contributed to speciation in a Palearctic alpine biodiversity hotspot: evidence from endemic species. Mol Phylogenet Evol 129:315–324

    PubMed  Google Scholar 

  • Wen J, Zhang JQ, Nie ZL, Yang Z, Hang S (2014) Evolutionary diversifications of plants on the Qinghai-Tibetan Plateau. Front Genet 5:4

    PubMed  PubMed Central  Google Scholar 

  • Xu T, Abbott RJ, Milne RI, Mao K, Fang KD, Wu G, Ciren Z, Miehe G, Liu J (2010) Phylogeography and allopatric divergence of cypress species (Cupressus L.) in the Qinghai-Tibetan Plateau and adjacent regions. BMC Evol Biol 10:194

    PubMed  PubMed Central  Google Scholar 

  • Xu T-T, Wang Q, Olson MS, Li Z-H, Miao N, Mao K-S (2017) Allopatric divergence, demographic history, and conservation implications of an endangered conifer Cupressus chengiana in the eastern Qinghai-Tibet Plateau. Tree Genet Genomes 13:100

    Google Scholar 

  • Yang FS, Qin AL, Li YF, Wang XQ (2012) Great genetic differentiation among populations of Meconopsis integrifolia and its implication for plant speciation in the Qinghai-Tibetan Plateau. PLoS ONE 7:e37196

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yao Y, Song X, Wortley A, Blackmore S, Li C (2015) A 22 570-year record of vegetational and climatic change from Wenhai Lake in the Hengduan Mountains biodiversity hotspot, Yunnan, Southwest China. Biogeosciences 12:1525–1535

    Google Scholar 

  • Zhang YL, Bing-Yuan LI, Zheng D (2002) A discussion on the boundary and area of the Tibetan Plateau in China. Geogr Res 21:1–8

    Google Scholar 

  • Zheng D (1996) The system of physico-geographical regions of the Qinghai-Xizang (Tibet) Plateau. Sci China Earth Sci 39:410–417

    Google Scholar 

  • Zheng D, Yao TD (2006) Uplifting of Tibetan Plateau with its environmental effects. Adv Earth Sci 21:451–458

    Google Scholar 

  • Zheng B, Xu Q, Shen Y (2002) The relationship between climate change and quaternary glacial cycles on the Qinghai-Tibetan Plateau: review and speculation. Quat Int 97–98:93–101

    Google Scholar 

  • Zhou S, Li J (1998) The sequence of Quaternary glaciation in the Bayan Har mountains. Quat Int 45–46:135–142

    Google Scholar 

  • Zhou J, Xu F, Wang T, Cao A, Yin C (2006) Cenozoic deformation history of the Qaidam Basin, NW China: results from cross-section restoration and implications for Qinghai-Tibet Plateau tectonics. Earth Planet Sci Lett 243:195–210

    CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by the National Natural Science Foundation of China (Grant Nos. 31622015, 31590821, 31370261) and Sichuan University (Fundamental Research Funds for the Central Universities, SCU2019D013, SCU2018D006). The Royal Botanic Garden Edinburgh is supported by the Scottish Government’s Rural and Environment Science and Analytical Services Division.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kangshan Mao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 412 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, J., Song, X., Ruhsam, M. et al. Distinctiveness, speciation and demographic history of the rare endemic conifer Juniperus erectopatens in the eastern Qinghai-Tibet Plateau. Conserv Genet 20, 1289–1301 (2019). https://doi.org/10.1007/s10592-019-01211-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-019-01211-2

Keywords

Navigation