Skip to main content

Advertisement

Log in

Integrating measures of long-distance dispersal into vertebrate conservation planning: scaling relationships and parentage-based dispersal analysis in the koala

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

Improved knowledge of dispersal parameters across multiple populations is essential for the effective management of species exposed to ongoing threats from habitat loss, fragmentation and climate change. Currently, management decisions are based on incomplete or insufficient knowledge of key dispersal parameters, especially long-distance dispersal, and its role in maintaining metapopulation connectivity, facilitating range shifts under climate change, or enabling the colonization of new habitats. Using a combination of microsatellite-based population genetic analyses, scaling relationships and parentage-based dispersal analysis we investigated levels and patterns of long-distance dispersal in the koala. Using home range size as a scalar predicted spatial variation in maximum dispersal distance amongst regional populations (range 13.4–43.4 km), while parentage-based dispersal analysis showed that long-distance dispersal (> 11.2 km) accounted for 16.7–18.5% of movements in a focal population. Common movement patterns were discerned, despite varying levels of imprecision and bias, that suggest an important role for long-distance dispersal in maintaining metapopulation connectivity. Our results suggest that implementation of a systematic approach to the estimation of dispersal across multiple populations would benefit koala conservation and management. This will require the use of both empirical and simulation studies to quantify and minimize sources of imprecision and bias that can occur including those related to incomplete sampling, the presence of fine-scale spatial genetic structure and areas of localized inbreeding. As limitations associated with partial sampling are likely to remain an inherent feature of large-scale dispersal studies, a large number of loci should be assayed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article and its supplementary information files.

References

  • Adams-Hosking C, Grantham HS, Rhodes JR, McAlpine C, Moss PT (2011) Modelling climate-change-induced shifts in the distribution of the koala. Wildl Res 38:122–130

    Article  Google Scholar 

  • Anderson AD, Weir BS (2007) A maximum-likelihood method for the estimation of pairwise relatedness in structured populations. Genetics 176(1):421–440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arora N, Van Noordwijk MA, Ackermann C, Willems EP, Nater A, Greminger M, Nietlisbach P, Dunkel LP, Utami Atmoko SS, Pamungkas J, Perwitasari-Farajallah D, Van Schaik CP, Krutzen M (2012) Parentage-based pedigree reconstruction reveals female matrilineal clusters and male-biased dispersal in nongregarious Asian great apes, the Bornean orang-utans (Pongo pygmaeus). Mol Ecol 21:3352–3362

    Article  CAS  PubMed  Google Scholar 

  • Ashton KG, Tracy MC, de Queiroz A (2000) Is Bergmann’s rule vaid for mammals? Am Nat 156:390–415

    Article  PubMed  Google Scholar 

  • Augustine D (1998) Modelling Chlamydia-koala interactions: coexistence, population dynamics and conservation implications. J Appl Ecol 35:261–272

    Article  Google Scholar 

  • Baguette M, Van Dyck H (2007) Landscape connectivity and animal behavior: functional grain as a key determinant for dispersal. Landsc Ecol 22:1117–1129

    Article  Google Scholar 

  • Banks SC, Skerratt LF, Taylor AC (2002) Female dispersal and relatedness structure in common wombats (Vombatus ursinus). J Zool 256:389–399

    Article  Google Scholar 

  • Baudinette RV (1978) Scaling of heart rate during locomotion in mammals. J Comp Physiol B 127:337–342

    Article  Google Scholar 

  • Bode M, Williamson D, Harrison H, Outram N, Jones GP (2017) Estimating dispersal kernels using genetic parentage data. Methods Ecol Evol 00:1–12

    Google Scholar 

  • Bowler DE, Benton TG (2005) Causes and consequences of animal dispersal strategies: relating individual behaviour to spatial dynamics. Biol Rev 80:205–225

    Article  PubMed  Google Scholar 

  • Bowman J, Jaeger JAG, Fahrig L (2002) Dispersal distance of mammals is proportional to home range size. Ecology 83:2049–2055

    Article  Google Scholar 

  • Broquet T, Petit EJ (2009) Molecular estimation of dispersal for ecology and population genetics. Annu Rev Ecol Evol Syst 40:193–216

    Article  Google Scholar 

  • Cain ML, Milligan BG, Strand AE (2000) Long-distance seed dispersal in plant populations. Am J Bot 87:1217–1227

    Article  CAS  PubMed  Google Scholar 

  • Clobert J, Danchin E, Dhondt AA, Nichols JD (2001) Dispersal. Oxford University Press, Oxford

    Google Scholar 

  • Cotto O, Olivieri I, Ronce O (2013) Optimal life-history schedule in a metapopulation with juvenile dispersal. J Evolut Biol 26:944–954

    Article  CAS  Google Scholar 

  • Cristescu R, Cahill V, Sherwin WB, Handasyde K, Carlyon K, Whisson D, Herbert CA, Carlsson BLJ, Wilton AN, Cooper DW (2009) Inbreeding and testicular abnormalities in a bottlenecked population of koalas (Phascolarctos cinereus). Wildl Res 36:299–308

    Article  Google Scholar 

  • Cristescu R, Ellis W, de Villiers D, Lee K, Woosnam-Merchez O, Frere C, Banks PB, Dique D, Hodgkison S, Carrick H, Carter D, Smith P, Carrick, F (2011) North Stradbroke Island: an island ark for Queensland's koala population? Proc Royal Soc Qld 117:309–334

    Google Scholar 

  • Davies N, Gramotnev G, Seabrook L, Bradley A, Baxter G, Rhodes J, Lunney D, McAlpine C (2013) Movement patterns of an arboreal marsupial at the edge of its range: a case study of the koala. Mov Ecol 1:8

    Article  PubMed  PubMed Central  Google Scholar 

  • Dawson TJ, Needham AD (1981) Cardiovascular characteristics of two resting marsupials: an insight into the cardio-respiratory allometry of marsupials. J Comp Physiol 145:95–100

    Article  Google Scholar 

  • Degabriele R, Dawson TJ (1979) Metabolism and heat balance in an arboreal marsupial, the koala (Phascolarctos cinereus). J Comp Physiol B 134:293–301

    Article  Google Scholar 

  • Dennison S, Frankham GJ, Neaves LE, Flanagan C, FitzGibbon S, Eldridge MDB, Johnson RN (2017) Population genetics of the koala (Phascolarctos cinereus) in north-eastern New South Wales and south-eastern Queensland. Aust J Zool 64:402–412

    Article  Google Scholar 

  • D’Eon R, Serrouya R (2005) Mule deer seasonal movements and multiscale resource selection using global positioning system radiotelemetry. J Mammal 86:736–744

    Article  Google Scholar 

  • Dique DS, Thompson J, Preece HJ, de Villiers DL, Carrick FN (2003) Dispersal patterns in a regional koala population in south-east Queensland. Wildl Res 30:281–290

    Article  Google Scholar 

  • Dudaniec RY, Rhodes JR, Worthington Wilmer J, Lyons M, Lee KE, McAlpine CA, Carrick FN (2013) Using multilevel models to identify drivers of landscape-genetic structure among management areas. Mol Ecol 22:3752–3765

    Article  PubMed  Google Scholar 

  • Eberhard IH (1972) Ecology of the koala, Phascolarctos cinereus (Goldfuss) on the Flinders Chase. University of Adelaide, Kangaroo Island

    Google Scholar 

  • Ellis WAH, Bercovitch FB (2011) Body size and sexual selection in the koala. Behav Ecol Sociobiol 65:1229–1235

    Article  Google Scholar 

  • Ellis WA, Hale PT, Carrick F (2002) Breeding dynamics of koalas in open woodlands. Wildl Res 29:19–25

    Article  Google Scholar 

  • Ellis WAH, Melzer A, Bercovitch FB (2009) Spatiotemporal dynamics of habitat use by koalas: the checkerboard model. Behav Ecol Sociobiology 63(8):1181–1188

    Article  Google Scholar 

  • Gall BC (1980) Aspects of the Ecology of the Koala, Phascolarctos cinereus (Goldfuss), in Tucki Tucki Nature Reserve, New South Wales. Wildl Res 7:167–176

    Article  Google Scholar 

  • Goldingay R, Dobner B (2014) Home range areas of koalas in an urban area of north-east New South Wales. Aust Mammal 36:74–80

    Article  Google Scholar 

  • Gordon G, McGreevy DG, Lawrie BC (1990) Koala population turnover and male social organisation. In: Lee AK, Handasyde KA, Sanson GD (eds) Biology of the koala. Surrey Beatty and Sons, Chipping Norton, pp 189–192

    Google Scholar 

  • Greenwood PJ, Harvey PH (1982) The natal and breeding dispersal of birds. Annu Rev Ecol Syst 13:1–21

    Article  Google Scholar 

  • Harrison HB, Saenz-Agudelo P, Planes S, Jones GP, Berumen ML (2013) Relative accuracy of three common methods of parentage analysis in natural populations. Mol Ecol 22:1158–1170

    Article  PubMed  Google Scholar 

  • Hillman SS, Drewes RC, Hedrick MS, Hancock TV (2014) Physiological vagility and its relationship to dispersal and neutral genetic heterogeneity in vertebrates. J Exp Biol 217:3356–3364

    Article  PubMed  Google Scholar 

  • Houlden BA, England P, Sherwin WB (1996) Paternity exclusion in koalas using hypervariable microsatellites. J Heredity 87:149–152

    Article  CAS  Google Scholar 

  • Jones AG, Arden WR (2003) Methods of parentage analysis in natural populations. Mol Ecol 12:2511–2523

    Article  CAS  PubMed  Google Scholar 

  • Jones AG, Small CM, Paczolt KA, Ratterman NL (2010) A practical guide to methods of parentage analysis. Mol Ecol 10:6–30

    Article  Google Scholar 

  • Kalinowski ST, Wagner AP, Taper ML (2006) ml-relate: a computer program for maximum likelihood estimation of relatedness and relationship. Mol Ecol Notes 6:576–579

    Article  CAS  Google Scholar 

  • Kavanagh RP, Stanton MA, Brassil TE (2007) Koalas continue to occupy their previous home-ranges after selective logging in Callitris-Eucalyptus forest. Wildl Res 34(2):94

    Article  Google Scholar 

  • King W, Garant D, Festa-Bianchet M (2015) Mother-offspring distances reflect sex differences in fine-scale genetic structure of eastern grey kangaroos. Ecol Evol 5:2084–2094

    Article  PubMed  PubMed Central  Google Scholar 

  • Kjeldsen SR, Zenger KR, Leigh K, Ellis W, Tobey J, Phalen D, Melzer A, FitzGibbon S, Raadsma HW (2016) Genome-wide SNP loci reveal novel insights into koala (Phascolarctos cinereus) population variability across its range. Conserv Genet 17:337–353

    Article  Google Scholar 

  • Klein EK, Lavigne C, Gouyon P (2006) Mixing of propagules from discrete sources at long distance: comparing a dispersal tail to an exponential. BMC Ecol 6:3

    Article  PubMed  PubMed Central  Google Scholar 

  • Koenig WD, Van Vuren D, Hooge PN (1996) Detectability, philopatry, and the distribution of dispersal distances in vertebrates. Trends Ecol Evol 11:514–517

    Article  CAS  PubMed  Google Scholar 

  • Kopps AM, Kang J, Sherwin WB, Palsbøll PJ (2015) How well do molecular and pedigree relatedness correspond in populations with diverse mating systems, and various types and quantities of molecular and demographic data? G3: Genes. Genomes Genet 5:1815–1826

    CAS  Google Scholar 

  • Kormann U, Gugerli F, Ray N, Excoffier L, Bollmann K (2012) Parsimony-based pedigree analysis and individual-based landscape genetics suggest topography to restrict dispersal and connectivity in the endangered capercaillie. Biol Cons 152:241–252

    Article  Google Scholar 

  • Lassau S, Ryan B, Close R, Moon C, Geraghty P, Coyle A, Pile J (2008) Home ranges and mortality of a roadside Koala Phascolarctos cinereus population at Bonville, New South Wales. Aust Zool 34:127–136

    Google Scholar 

  • Lee KE, William E, Carrick F, Corley S, Johnston S, Baverstock PR, Nock C, Rowe K, Seddon J (2013) Anthropogenic changes to the landscape resulted in colonization of koalas in north-east New SouthWales, Australia. Aust Ecol 38:355–363

    Article  Google Scholar 

  • Lowe WH (2009) What drives long-distance dispersal? A test of theoretical predictions. Ecology 90:1456–1462

    Article  PubMed  Google Scholar 

  • Matthews A, Lunney D, Gresser S, Waitz M (2016) Movement patterns of koalas in remnant forest after fire. Aust Mammal 38:91–104

    Article  Google Scholar 

  • McAlpine C, Lunney D, Melzer A, Menkhorst P, Phillips S, Phalen D, Ellis W, Foley W, Baxter G, de Villier D, Kavanagh R, Adams-Hosking C, Todd C, Whisson D, Molsher R, Walter M, Lawler I, Close R (2015) Conserving koalas: a review of the contrasting regional trends, outlooks and policy challenges. Biol Cons 192:226–236

    Article  Google Scholar 

  • Melero Y, Oliver MK, Lambin X (2017) Relationship type affects the reliability of dispersal distance estimated using pedigree inferences in partially sampled populations: a case study involving invasive American mink in Scotland. Mol Ecol 26:4059–4071

    Article  CAS  PubMed  Google Scholar 

  • Melzer A (1995) Aspects of the ecology of the koala, Phascolarctos cinereus (Goldfuss, 1817), in the sub-humid woodlands of central Queensland. PhD Thesis, School of Biological Sciences, The University of Queensland

  • Melzer A, Ellis W, Gordon G, Tucker G, Kindness R, Carrick F (2011) Unusual patterns of tooth wear among koalas Phascolarctos cinereus from St Bees Island, Queensland, require re-evaluation of criteria for aging koalas by tooth-wear class. Aust Zool 35:550–554

    Article  Google Scholar 

  • Milligan BG (2003) Maximum-likelihood estimation of relatedness. Genetics 163:1153–1167

    PubMed  PubMed Central  Google Scholar 

  • Moore JA, Draheim HM, Etter D, Winterstein S, Scribner KT (2014) Application of large-scale parentage analysis for investigating natal dispersal in highly vagile vertebrates: a case study of american black bears (Ursus americanus). PLoS ONE 9:e91168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nathan R (2001) The challenges of studying dispersal. Trends Ecol Evol 16:481–483

    Article  CAS  Google Scholar 

  • Nathan R (2005) Long-distance dispersal research: building a network of yellow brick roads. Divers Distrib 11:125–130

    Article  Google Scholar 

  • Nathan R, Perry G, Cronin JT, Strand AE, Cain ML (2003) Methods for estimating long-distance dispersal. Oikos 103(2):261–273

    Article  Google Scholar 

  • Nathan R, Klein E, Robledo-Anuncio JJ, Revilla E (2012) Dispersal kernels: review. In: Clobert J, Baguette M, Benton TG, Bullock JM (eds) Dispersal ecology and evolution. Oxford University Press, Oxford, pp 186–210

    Chapter  Google Scholar 

  • NSWNPWS (2002) Tuckean Nature Reserve Plan of Management. New South Wales National Parks and Wildlife Service, Sydney, p 16

    Google Scholar 

  • Paradis E, Baillie SR, Sutherland WJ, Gregory RD (1998) Patterns of natal and breeding dispersal in birds. J Anim Ecol 67:518–536

    Article  Google Scholar 

  • Parkes T, Delaney M, Dunphy M, Woodford R, Bower H, Bower S, Bailey D, Joseph R, Nagle J, Roberts T, Lymburner S (2012) Big Scrub: a cleared landscape in transition back to forest? In: McDonald T, editor. Ecological Society of Australia, Ecological Management and Restoration. pp 212–223

  • Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 28:2537–2539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phillips SS (2000) Population trends and the koala conservation debate. Conserv Biol 14:650–659

    Article  Google Scholar 

  • Phillips S, Chang M (2013) Koala habitat and population assessment: Ballina Shire Council LGA. Final Report to Ballina Shire Council. Biolink Ecological Consultants, Uki

    Google Scholar 

  • Pulliam HR (1988) Sources, sinks, and population regulation. Am Nat 132:652–661

    Article  Google Scholar 

  • Ramsay S (1999) The ecology and dispersal patterns of juvenile koalas, Phascolarctos cinereus, in fragmented habitat. Ph.D. Thesis, University of Sydney

  • Robinson AC (1978) The Koala in South Australia. In: The Koala. Proceedings of the Taronga Symposium on Koala Biology, Management and Medicine. Bergin TJ, editor. Zoological Parks Board of New South Wales, Sydney. pp 132–143

  • Ruiz-Rodriguez CT, Ishida Y, Greenwood AD, Roca AL (2014) Development of 14 microsatellite markers in the Queensland koala (Phascolarctos cinereus adustus) using next generation sequencing technology. Conserv Genet Resour 6:429–431

    Article  PubMed  PubMed Central  Google Scholar 

  • Santini L, Di Marco M, Visconti P, Baisero D, Boitani L, Rondinini C (2013) Ecological correlates of dispersal distance in terrestrial mammals. Hystrix Italian J Mammal 24:181–186

    Google Scholar 

  • Smith AG, McAlpine CA, Rhodes JR, Lunney D, Seabrook L, Baxter G (2013) Out on a limb: habitat use of a specialist folivore, the koala, at the edge of its range in a modified semi-arid landscape. Landscape Ecol 28:415–426

    Article  Google Scholar 

  • Spong G, Creel S (2001) Deriving dispersal distances from genetic data. Proc R Soc Lond Ser B Biol Sci 268:2571–2574

    Article  CAS  Google Scholar 

  • Sutherland GD, Harestad AS, Price K, Lertzman KP (2000) Scaling of natal dispersal distances in terrestrial birds and mammals. Conserv Ecol 16

  • Telfer S, Piertney SB, Dallas JF, Stewart WA, Marshall F, Gow JL, Lambin X (2003) Parentage assignment detects frequent and large-scale dispersal in water voles. Mol Ecol 12:1939–1949

    Article  CAS  PubMed  Google Scholar 

  • Thompson J (2006) The comparative ecology and population dynamics of koalas in the Koala Coast region of south-east Queensland. Ph.D. Thesis, University of Queensland, Brisbane

  • Trakhtenbrot A, Nathan R, Perry G, Richardson DM (2005) The importance of long-distance dispersal in biodiversity conservation. Divers Distrib 11:173–181

    Article  Google Scholar 

  • Truvé J, Lemel J (2003) Timing and distance of natal dispersal for wild boar Sus scrofa in Sweden. Wildl Biol 9:51–57

    Article  Google Scholar 

  • van Beest FM, Rivrud IM, Loe LE, Milner JM, Mysterud A (2011) What determines variation in home range size across spatiotemporal scales in a large browsing herbivore? Anim Ecol 80:771–785

    Article  Google Scholar 

  • Walton Z, Samelius G, Odden M, Willebrand T (2003) Long-distance dispersal in red foxes Vulpes vulpes revealed by GPS tracking. Eur J Wildl Res 64:64

    Article  Google Scholar 

  • West GB, Brown JH (2004) Life’s universal scaling laws. Phys Today 57:36–42

    Article  Google Scholar 

  • Whisson DA, Holland GJ, Carlyon K (2012) Translocation of overabundant species: implications for translocated individuals. J Wildl Manag 76:1661–1669

    Article  Google Scholar 

  • White NA (1999) Ecology of the koala (Phascolarctos cinereus) in rural south-east Queensland. Australia. Wildl Res 26(6):731

    Article  Google Scholar 

  • Whitmee S, Orme CDL (2013) Predicting dispersal distance in mammals: a trait-based approach. J Anim Ecol 82:211–221

    Article  PubMed  Google Scholar 

  • Wikelski M, Kays WR, Kasdin NJ, Thorup K, Smith JA, Swenson GWJ (2007) Going wild: what a global small-animal tracking system could do for experimental biologists. J Exp Biol 210:181–186

    Article  PubMed  Google Scholar 

  • Yang D, Song Y, Ma J, Li P, Zhang H, Price MRS, Li C, Jiang Z (2016) Stepping-stones and dispersal flow: establishment of a meta-population of Milu (Elaphurus davidianus) through natural re-wilding. Sci Rep 6:27297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yom-Tov Y, Nix H (1986) Climatological correlates for body size of five species of Australian mammals. Biol J Lin Soc 29:245–262

    Article  Google Scholar 

Download references

Acknowledgements

This study benefited enormously from input provided by members of the Australian Wildlife Genomics Group (L. Neaves, M. Eldridge and R. Johnson), the New South Wales Koala Expert Advisory Committee, C. Moritz and W. Sherwin for which we are grateful. They offered differing perspectives and approaches for the estimation of dispersal parameters from molecular data that led us to consider more carefully the limitations and benefits of parentage-based dispersal analysis and whether it would be feasible to implement a systematic approach to the estimation of dispersal parameters to support conservation management of this vulnerable species. We gratefully acknowledge the assistance provided by L. Vass and volunteers of Friends of the Koala Inc. who undertook opportunistic collection of koala tissue samples and provided access to collection and translocation data for these animals. This study was supported by a Southern Cross University Research Seed Grant 2016 to RG and JAN and funding from New South Wales Roads and Maritime Services to Ecosure Pty Ltd as part of a research consultancy to LC, RG and SP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janette A. Norman.

Ethics declarations

Human participants and animal consent

Animal capture and sampling procedures were performed under scientific license S12578 issued to SP by the NSW Office of Environment & Heritage, and an Animal Research Authority and associated Animal Care and Ethics Approval issued by the NSW Department of Primary Industries. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. SP is Managing Director of Biolink Ecological Consultants. This does not alter the authors’ adherence to data sharing policies.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Norman, J.A., Phillips, S.S., Blackmore, C.J. et al. Integrating measures of long-distance dispersal into vertebrate conservation planning: scaling relationships and parentage-based dispersal analysis in the koala. Conserv Genet 20, 1163–1174 (2019). https://doi.org/10.1007/s10592-019-01203-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-019-01203-2

Keywords

Navigation