Skip to main content

Advertisement

Log in

Genetic diversity and population structure of Garcinia paucinervis, an endangered species using microsatellite markers

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

Genetic diversity influences the fitness of species and provides variation for adaptation. Garcinia paucinervis Chun et How (Clusiaceae) is an endangered species with important ecological, medicinal and ornamental values endemic to Southwest China and Northern Vietnam, whose populations were severely fragmented in island habitats and population sizes were influenced by human. The assessment of genetic variation of G. paucinervis is anticipated to provide essential information for efficient conservation strategies. In this study, a suite of population genetics tests and analyses were used to investigate genetic diversity and structure of the 11 natural populations (a total of 360 individuals) of G. paucinervis in Guangxi and Yunnan Provinces, China, based on genotypes at 14 loci. Our results revealed a low to moderate genetic diversity in G. paucinervis remnants (HE = 0.487, I = 0.924, AR = 3.420). The global inbreeding coefficient (FIS = 0.004) showed significant deviation from Hardy–Weinberg equilibrium, implying that the risk of inbreeding depression accompanied by heterozygote deficiency was probably due to severe habitat fragmentation and decreasing population sizes. Significant bottlenecks were detected in two populations. There has been little recent exchange of genes between most of the population pairs. Mantel test revealed that the genetic distance was not related to the geographical distance, suggesting a limitation of gene flow. A population from Yunnan Province could be classified as an independent cluster separated from the other populations, which should be considered as a prior conservation unit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ávila-Díaz I, Oyama K (2007) Conservation genetics of an endemic and endangered epiphytic Laelia speciosa (Orchidaceae). Am J Bot 94:184–193

    Article  PubMed  Google Scholar 

  • Botstein D (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphism. Am J Hum Genet 32:314–331

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brookfield JF (1996) A simple new method for estimating null allele frequency from heterozygote deficiency. Mol Ecol 5:453

    Article  CAS  PubMed  Google Scholar 

  • Cao PJ, Yao QF, Ding BY, Zeng HY, Zhong YX, Fu CX, Jin XF (2006) Genetic diversity of Sinojackia dolichocarpa (Styracaceae), a species endangered and endemic to China, detected by inter-simple sequence repeat (ISSR). Biochem Syst Ecol 34:231–239

    Article  CAS  Google Scholar 

  • Carvajal-Rodriguez A (2018) Myriads: p-value-based multiple testing correction. Bioinformatics 34:1043–1104

    Article  CAS  PubMed  Google Scholar 

  • Carvajal-Rodríguez A, de Uña-Alvarez J, Rolán-Alvarez E (2009) A new multitest correction (SGoF) that increases its statistical power when increasing the number of tests. BMC Bioinformatics 10:209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carvalho DC, Oliveira DAA, Sampaio I, Beheregaray LB (2014) Analysis of propagule pressure and genetic diversity in the invasibility of a freshwater apex predator: the peacock bass (genus Cichla). Neotrop Ichthyol 12:105–116

    Article  Google Scholar 

  • Chan CH, Robertson HA, Saul EK, Nia LV, Phuong LV, Kong XC, Zhao Y, Chambers GK (2011) Genetic variation in the kakerori (Pomarea dimidiata), an endangered endemic bird successfully recovering in the Cook Islands. Conserv Genet 12:441–447

    Article  Google Scholar 

  • Chapuis MP, Estoup A (2007) Microsatellite null alleles and estimation of population differentiation. Mol Biol Evol 24:621–631

    Article  CAS  PubMed  Google Scholar 

  • Chung MY, Nason JD, López-Pujol J, Yamashiro T, Yang BY, Luo YB, Chung MG (2014) Genetic consequences of fragmentation on populations of the terrestrial orchid Cymbidium goeringii. Biol Conserv 170:222–231

    Article  Google Scholar 

  • Cullingham CI, James PMA, Cooke JEK, Coltman DW (2012) Characterizing the physical and genetic structure of the lodgepole pine × jack pine hybrid zone: mosaic structure and differential introgression. Evol Appl 5:879–891

    Article  PubMed  PubMed Central  Google Scholar 

  • Dardengo JFE, Rossi AAB, Varella TL (2018) The effects of fragmentation on the genetic structure of Theobroma speciosum (Malvaceae) populations in Mato Grosso, Brazil. Rev Biol Trop 66:218–226

    Article  Google Scholar 

  • Deacon NJ, Cavender-Bares J (2015) Limited pollen dispersal contributes to population genetic structure but not local adaptation in Quercus oleoides forests of Costa Rica. PLoS ONE 10:e0138783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doyle JJ (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Fagen LI, Xia N (2005) Population structure and genetic diversity of an endangered species, Glyptostrobus pensilis (Cupressaceae). Bot Bull Acad Sin 46:155–162

    Google Scholar 

  • Francisco-Ortega J, Santos-Guerra A, Kim SC, Crawford DJ (2000) Plant genetic diversity in the Canary Islands: a conservation perspective. Am J Bot 87:909–919

    Article  CAS  PubMed  Google Scholar 

  • Frankham R (2005) Genetics and extinction. Biol Conserv 126:131–140

    Article  Google Scholar 

  • Fu LG (1991) China plant red data book. Science Press, Beijing, pp 736–737 (in Chinese)

    Google Scholar 

  • Funk WC, McKay JC, Hohenlohe PA, Allendorf FW (2012) Harnessing genomics for delineating conservation units. Trends Ecol Evol 9:489–496

    Article  Google Scholar 

  • Guichoux E, Lagache L, Wagner S, Chaumeil P, Léger P, Lepais O, Lepoittevin C, Malausa T, Revardel E, Salin F, Petit RJ (2011) Current trends in microsatellite genotyping. Mol Ecol Resour 11:591–611

    Article  CAS  PubMed  Google Scholar 

  • Honjo M, Ueno S, Tsumura Y, Washitami I, Ohsawa R (2004) Phylogeographic study based on intraspecific sequence variation of chloroplast DNA for the conservation of genetic diversity in the Japanese endangered species Primula sieboldii. Biol Conserv 120:211–220

    Article  Google Scholar 

  • Hu G, Zhang ZH, Yang P, Zhang QW, Yuan CA (2017) Development of microsatellite markers in Garcinia paucinervis (Clusiaceae), an endangered species of karst habitats. Appl Plant Sci 5:1600131

    Article  Google Scholar 

  • Jost LOU (2008) Gst and its relatives do not measure differentiation. Mol Ecol 17:4015–4026

    Article  PubMed  Google Scholar 

  • Jump AS, Peñuelas J (2006) Genetic effects of chronic habitat fragmentation in a wind-pollinated tree. Proc Natl Acad Sci USA 103:8096–8100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalinowski ST, Taper ML, Marshall TC (2007) Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol Ecol 16:1099–1106

    Article  PubMed  Google Scholar 

  • Kang M, Jiang M, Huang H (2005) Genetic diversity in fragmented populations of Berchemiella wilsonii var. pubipetiolata (Rhamnaceae). Ann Bot 95:1145–1151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karron JD (1997) Genetic consequences of different patterns of distribution and abundance. In: Kunin WE, Gaston KJ (eds) The biology of rarity: causes and consequences of rare-common differences. Chapman Hall, London, pp 174–189

    Chapter  Google Scholar 

  • Kramer AT, Ison JL, Ashley MV, Howe HF (2008) The paradox of forest fragmentation genetics. Conserv Biol 22:878–885

    Article  PubMed  Google Scholar 

  • Lande R (1999) Extinction risks from anthropogenic, ecological, and genetic factors. In: Landweber LF, Dobson AP (eds) Genetics and the extinction of species: DNA and the conservation of biodiversity. Princeton University Press, Princeton, pp 1–22

    Google Scholar 

  • Liang RL (2015) Garcinia paucinervis: Guangxi ironwood. Forestry Guangxi 32:24–25 (in Chinese)

    Google Scholar 

  • Lowe AJ, Boshier D, Ward M, Bacles CFE, Navarro C (2005) Genetic resource impacts of habitat loss and degradation; reconciling empirical evidence and predicted theory for neotropical trees. Heredity 95:255–273

    Article  CAS  PubMed  Google Scholar 

  • Mantel N (1967) The detection of disease clustering and a generalized regression approach. Can Res 27:209–220

    CAS  Google Scholar 

  • Neel MC, Commings MP (2003) Effectiveness of conservation targets in capturing genetic diversity. Conserv Biol 17:219–229. https://doi.org/10.1046/j.1523-1739.2003.01352.x

    Article  Google Scholar 

  • Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583–590

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nybom H (2004) Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plants. Mol Ecol 13:1143–1155

    Article  CAS  PubMed  Google Scholar 

  • Peakall ROD, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Resour 6:288–295

    Article  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reisch C, Poschlod P, Wingender R (2003) Genetic variation of Saxifraga paniculata Mill. (Saxifragaceae): molecular evidence for glacial relict endemism in central Europe. Biol J Lin Soc 80:11–21

    Article  Google Scholar 

  • Rousset F (2008) Genepop’007: a complete re-implementation of the genepop software for Windows and Linux. Mol Ecol Resour 8:103–106

    Article  PubMed  Google Scholar 

  • Segarra-Moragues JG, Palop-Esteban M, González-Candelas F, Catalán P (2005) On the verge of extinction: genetics of the critically endangered Iberian plant species, Borderea chouardii (Dioscoreaceae) and implications for conservation management. Mol Ecol 14:969–982

    Article  CAS  PubMed  Google Scholar 

  • Slatkin M (1994) Gene Flow and Population Structure. In: Real LA (ed) Ecological genetics. Princeton University Press, Princeton, pp 3–17

    Google Scholar 

  • Spencer CC, Neigel JE, Leberg PL (2000) Experimental evaluation of the usefulness of microsatellite DNA for detecting demographic bottlenecks. Mol Ecol 9:1517–1528

    Article  CAS  PubMed  Google Scholar 

  • Szpiech ZA, Jakobsson M, Rosenberg NA (2008) ADZE: a rarefaction approach for counting alleles private to combinations of populations. Bioinformatics 24:2498–2504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tautz D (1989) Hypervariability of simple sequences as a general source for polymorphic DNA markers. Nucleic Acids Res 17:6463–6471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Templeton AR (2010) Introduction to conservation genetics. Cambridge University Press, Cambridge, p 56

    Google Scholar 

  • Toure D, Burnet JE, Jianwei Z (2010) Rare plants protection importance and implementation of measures to avoid, minimize or mitigate impacts on their survival in Longhushan Nature Reserve, Guangxi Autonomous Region, China. J Am Sci 6:221–238

    Google Scholar 

  • Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Resour 4:535–538

    Article  CAS  Google Scholar 

  • Wang ZF, Cao HL, Wu LF, Guo Y, Mei QM, Li M, Wang Y, Wang ZM (2017) A set of novel microsatellite markers developed for an economically important tree, Dracontomelon duperreanum, in China. Genet Mol Res 16:gmr16029578

    Google Scholar 

  • Wilson GA, Rannala B (2003) Bayesian inference of recent migration rates using multi-locus genotypes. Genetics 163:1177–1191

    PubMed  PubMed Central  Google Scholar 

  • Yang L, Liu ZL, Li J, Dyer RJ (2015) Genetic structure of Pinus henryi and Pinus tabuliformis: natural landscapes as significant barriers to gene flow among populations. Biochem Syst Ecol 61:124–132

    Article  CAS  Google Scholar 

  • Yao XH, Ye QG, Kang M, Huang HW (2007) Microsatellite analysis reveals interpopulation differentiation and gene flow in the endangered tree Changiostyrax dolichocarpa (Styracaceae) with fragmented distribution in central China. New Phytol 176:472–480

    Article  PubMed  Google Scholar 

  • Yu XM, Zhou Q, Qian ZQ, Li S, Zhao GF (2006) Analysis of genetic diversity and population differentiation of Larix potaninii var. chinensis using microsatellite DNA. Biochem Genet 44:483–493

    Article  CAS  Google Scholar 

  • Zhai SH, Yin GS, Yang XH (2018) Population genetics of the endangered and wild edible plant Ottelia acuminata in southwestern China using novel SSR markers. Biochem Genet 56:1–20

    Article  CAS  Google Scholar 

  • Zhang DX, Hewitt GM (2003) Nuclear DNA analyses in genetic studies of populations: practice, problems and prospects. Mol Ecol 12:563–584

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Liu B, Zhou Y, Liu ZZ, Li P, Long CL (2015) Potential ornamental plants in Clusiaceae from China. Acta Hort 28:233–238

    Article  Google Scholar 

  • Zhang JJ, Chai SF, Lü SH, Shi YC, Jiang YS, Wei X (2017) The habitat characteristics and analysis on endangering factors of rare and endangered plant Garcinia paucinervis. Ecol Environ Sci 26:582–589 (in Chinese)

    Google Scholar 

  • Zhang JJ, Wei X, Wu SH, Chai SF, Lü SH, Han Y (2018a) Morphological differentiation of Garcinia paucinervis fruits and seeds and effects of exogenous substances on its seed germination and seedling growth. Guihaia 38:509–520 (in Chinese)

    Google Scholar 

  • Zhang YY, Shi E, Yang ZP, Geng QF, Qiu YX, Wang ZS (2018b) Development and application of genomic resources in an endangered palaeoendemic Tree, Parrotia subaequalis (Hamamelidaceae) From Eastern China. Front Plant Sci 9:246

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We would like to express our sincere thanks to Mr. Shi-hong Lü, Dr. Yan-cai Shi, Mr. Yun-sheng Jiang and Mr. Jian-min Tang for the field observation and collecting samples, as well as Dr. Ming Kang for comments on this manuscript. This project was supported by Natural Science Foundation of Guangxi (2015GXNSFDA13915), Guangxi Science and Technology Base and Special Fund for Talents (AD17129022), and National Natural Science Foundation of China (31600306).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ji-Qing Wei or Zong-You Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, JJ., Wei, X., Chai, SF. et al. Genetic diversity and population structure of Garcinia paucinervis, an endangered species using microsatellite markers. Conserv Genet 20, 837–849 (2019). https://doi.org/10.1007/s10592-019-01176-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-019-01176-2

Keywords

Navigation