Skip to main content

Advertisement

Log in

History matters: contemporary versus historic population structure of bobcats in the New England region, USA

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

Habitat fragmentation and genetic bottlenecks can have substantial impacts on the health and management of wildlife species by lowering diversity and subdividing populations. Population genetic comparisons across time periods can help elucidate temporal changes in populations and the processes responsible for the changes. Bobcats (Lynx rufus) are wide-ranging carnivores and are currently increasing in abundance across an expanding range. Bobcat populations in New England have fluctuated in the past century in response to changes in their prey base, harvest pressure, and landscape development. We genotyped contemporary (2010–2017) and historic (1952–1964) bobcats from New England and Quebec, Canada at a suite of microsatellite loci and tested for differences in diversity, effective population size, and gene flow. Over 20 generations separated the sampling periods, and the intervening years were marked by drastic changes in land use and species management regimes. We found a general decrease in genetic diversity and differing population genetic structure through time. Effective population size decreased at the end of the historic period, coincident with a spike in harvest, but rebounded to greater numbers in the contemporary period. Our results suggest that bobcat populations in the region are robust, but development and range dynamics may play a significant role in population structure. Our study also highlights the benefits of a historical perspective in interpreting contemporary population genetic data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anderson EM, Lovallo MJ (2003) Bobcat and Lynx. In: Feldhamer GA, Thompson BC, Chapman JA (eds) Wild mammals of North America: biology, management, and conservation, 2nd edn. Johns Hopkins University Press, Baltimore, pp 758–786

    Google Scholar 

  • Anderson CS, Prange S, Gibbs HL (2015) Origin and genetic structure of a recovering bobcat (Lynx rufus) population. Can J Zool 93:889–899

    Article  CAS  Google Scholar 

  • Baigas PE, Squires JR, Olson LE et al (2017) Using environmental features to model highway crossing behavior of Canada lynx in the Southern Rocky Mountains. Landsc Urban Plan 157:200–213

    Article  Google Scholar 

  • Beerli P (2013) Migrate documentation. Florida State University. http://popgen.sc.fsu.edu/migratedoc.pdf. Accessed 3 March 2018

  • Beerli P, Felsenstein J (2001) Maximum likelihood estimation of a migration matrix and effective population sizes in n subpopulations by using a coalescent approach. Proc Natl Acad Sci USA 98:4563–4568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Broman DJA, Litvaitis JA, Ellingwood M et al (2014) Modeling bobcat (Lynx rufus) habitat associations using telemetry locations and citizen-scientist observations: are the results comparable? Wildl Biol 20:229–237

    Article  Google Scholar 

  • Burakowski EA, Wake CP, Braswell B et al (2008) Trends in wintertime climate in the northeastern United States: 1965–2005. J Geophys Res 113:JD009870

    Article  Google Scholar 

  • Cambridge Systematics, Inc. (1994) New England Transportation Initiative. In: States of CT, ME, MA, NH, RI, VT, and the New England Governor’s conference

  • Carmichael LE, Clark W, Strobeck C (2000) Development and characterization of microsatellite loci from lynx (Lynx canadensis), and their use in other felids. Mol Ecol 9:2155–2234

    Article  Google Scholar 

  • Cobben MMP, Verboom J, Opdam PFM et al (2011) Projected climate change causes loss and redistribution of genetic diversity in a model metapopulation of a medium-good disperser. Ecography 34:920–932

    Article  Google Scholar 

  • Coulon A, Fitzpatrick JW, Bowman R et al (2008) Congruent population structure inferred from dispersal behaviour and intensive genetic surveys of the threatened Florida scrub-jay (Aphelocoma cœrulescens). Mol Ecol 17:1685–1701

    Article  CAS  PubMed  Google Scholar 

  • Crooks KR (2002) Relative sensitivities of mammalian carnivores to habitat fragmentation. Conserv Biol 16:488–502

    Article  Google Scholar 

  • Croteau EK, Heist EJ, Nielsen CK (2010) Fine-scale population structure and sex-biased dispersal in bobcats (Lynx rufus) from southern Illinois. Can J Zool 88:536–545

    Article  Google Scholar 

  • de Meeûs T (2018) Revisiting FIS, FST, Wahlund effects, and null alleles. J Hered 109:446–456

    Article  PubMed  Google Scholar 

  • Dray S, Dufour AB (2007) The ade4 package: implementing the duality diagram for ecologists. J Stat Softw 22:1–20

    Article  Google Scholar 

  • Earl DA, vonHoldt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing Structure output and implementing the Evanno method. Conserv Genet Resour 4:359–361

    Article  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Excoffier L, Foll M, Petit RJ (2009) Genetic consequences of range expansions. Annu Rev Ecol Evol Syst 40:481–501

    Article  Google Scholar 

  • Faircloth BC, Reid A, Valentine T et al (2005) Tetranucleotide, trinucleotide, and dinucleotide loci from the bobcat (Lynx rufus). Mol Ecol Notes 5:387–389

    Article  CAS  Google Scholar 

  • Farrell LE, Levy DM, Donovan T et al (2018) Landscape connectivity for bobcat (Lynx rufus) and lynx (Lynx canadensis) in the Northeastern United States. PLoS ONE 13:e0194243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foster DR, Motzkin G, Bernardos D, Cardoza J (2002) Wildlife dynamics in the changing New England landscape. J Biogeogr 29:1337–1357

    Article  Google Scholar 

  • Green RE, Purcell KL, Thompson CM et al (2018) Reproductive parameters of the fisher (Pekania pennanti) in the southern Sierra Nevada, California. J Mammal 99:537–553

    Article  Google Scholar 

  • Guillot G, Mortier F, Estoup A (2005) GENELAND: a computer package for landscape genetics. Mol Ecol Notes 5:712–715

    Article  CAS  Google Scholar 

  • Hagen SB, Kopatz A, Aspi J et al (2015) Evidence of rapid change in genetic structure and diversity during range expansion in a recovering large terrestrial carnivore. Proc R Soc B 282:20150092

    Article  PubMed  PubMed Central  Google Scholar 

  • Hansen K (2007) Bobcat: master of survival. Oxford University Press, New York

    Google Scholar 

  • Hewitt G (2000) The genetic legacy of the Quaternary ice ages. Nature 405:907

    Article  CAS  PubMed  Google Scholar 

  • Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23:1801–1806

    Article  CAS  PubMed  Google Scholar 

  • Jombart T, Devillard S, Dufour A-B, Pontier D (2008) Revealing cryptic spatial patterns in genetic variability by a new multivariate method. Heredity 101:92–103

    Article  CAS  PubMed  Google Scholar 

  • Jorde PE, Ryman N (1995) Temporal allele frequency change and estimation of effective size in populations with overlapping generations. Genetics 139:1077–1090

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kalinowski ST (2005) HP-RARE 1.0: a computer program for performing rarefaction on measures of allelic richness. Mol Ecol Notes 5:187–189

    Article  CAS  Google Scholar 

  • Koen EL, Bowman J, Murray DL, Wilson PJ (2014) Climate change reduces genetic diversity of Canada lynx at the trailing range edge. Ecography 37:754–762

    Article  Google Scholar 

  • Kosterman MK, Squires JR, Holbrook JD et al (2018) Forest structure provides the income for reproductive success in a southern population of Canada lynx. Ecol Appl 28:1032–1043

    Article  PubMed  Google Scholar 

  • Lee EJ, Luedtke JG, Allison JL et al (2010) The effects of different maceration techniques on nuclear DNA amplification using human bone. J Forensic Sci 55:1032–1038

    Article  CAS  PubMed  Google Scholar 

  • Lee JS, Ruell EW, Boydston EE et al (2012) Gene flow and pathogen transmission among bobcats (Lynx rufus) in a fragmented urban landscape. Mol Ecol 21:1617–1631

    Article  PubMed  Google Scholar 

  • Li R, Liriano L (2011) A bone sample cleaning method using trypsin for the isolation of DNA. Leg Med 13:304–308

    Article  CAS  Google Scholar 

  • Li R, Chapman S, Thompson M, Schwartz M (2009) Developing a simple method to process bone samples prior to DNA isolation. Leg Med 11:76–79

    Article  CAS  Google Scholar 

  • Litvaitis JA (1993) Response of early successional vertebrates to historic changes in land use. Conserv Biol 7:866–873

    Article  Google Scholar 

  • Litvaitis JA (2001) Importance of early successional habitats to mammals in eastern forests. Wildl Soc Bull 29:466–473

    Google Scholar 

  • Litvaitis JA, Tash JP (2008) An approach toward understanding wildlife-vehicle collisions. Environ Manag 42:688–697

    Article  Google Scholar 

  • Litvaitis JA, Stevens CL, Mautz WW (1984) Age, sex, and weight of bobcats in relation to winter diet. J Wildl Manag 48:632–635

    Article  Google Scholar 

  • Litvaitis JA, Tash JP, Stevens CL (2006) The rise and fall of bobcat populations in New Hampshire: relevance of historical harvests to understanding current patterns of abundance and distribution. Biol Conserv 128:517–528

    Article  Google Scholar 

  • Litvaitis JA, Reed GC, Carroll RP et al (2015) Bobcats (Lynx rufus) as a model organism to investigate the effects of roads on wide-ranging carnivores. Environ Manag 55:1366–1376

    Article  Google Scholar 

  • Lorimer CG (2001) Historical and ecological roles of disturbance in eastern North American forests: 9000 years of change. Wildl Soc Bull 29:425–439

    Google Scholar 

  • Luna C (1971) The handbook of transportation in America. Popular Library, New York

    Google Scholar 

  • Lynch GS, Kirby JD, Warren RJ, Conner LM (2008) Bobcat spatial distribution and habitat use relative to population reduction. J Wildl Manag 72:107–112

    Article  Google Scholar 

  • Mahard TJ, Litvaitis JA, Tate P et al (2016) An evaluation of hunter surveys to monitor relative abundance of bobcats. Wildl Soc Bull 40:224–232

    Article  Google Scholar 

  • Martinuzzi S, Stewart SI, Helmers DP et al (2015) The 2010 wildland–urban interface of the conterminous United States. U.S. Department of Agriculture, Forest Service, Northern Research Station. https://doi.org/10.2737/NRS-RMAP-8. Accessed 18 Sep 2015

  • McRae BH, Beier P, Dewald LE et al (2005) Habitat barriers limit gene flow and illuminate historical events in a wide-ranging carnivore, the American puma. Mol Ecol 14:1965–1977

    Article  CAS  PubMed  Google Scholar 

  • Menotti-Raymond M, David VA, Lyons LA et al (1999) A genetic linkage map of microsatellites in the domestic cat (Felis catus). Genomics 57:9–23

    Article  CAS  PubMed  Google Scholar 

  • Menotti-Raymond MA, David VA, Wachter LL et al (2005) An STR forensic typing system for genetic individualization of domestic cat (Felis catus) samples. J Forensic Sci 50:1061–1070

    Article  CAS  PubMed  Google Scholar 

  • Millions DG, Swanson BJ (2007) Impact of natural and artificial barriers to dispersal on the population structure of bobcats. J Wildl Manag 71:96–102

    Article  Google Scholar 

  • Nagylaki T (1985) Homozygosity, effective number of alleles, and interdeme differentiation in subdivided populations. Proc Natl Acad Sci USA 82:8611–8613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ordeñana MA, Crooks KR, Boydston EE et al (2010) Effects of urbanization on carnivore species distribution and richness. J Mammal 91:1322–1331

    Article  Google Scholar 

  • Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Bioinformatics 28:2537–2539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peers MJL, Thornton DH, Murray DL (2013) Evidence for large scale effects of competition: niche displacement in Canada lynx and bobcat. Proc R Soc B 280:20132495

    Article  PubMed  PubMed Central  Google Scholar 

  • Peery MZ, Kirby R, Reid BN et al (2012) Reliability of genetic bottleneck tests for detecting recent population declines. Mol Ecol 21:3403–3418

    Article  PubMed  Google Scholar 

  • Piry S, Luikart G, Cornuet J (1999) BOTTLENECK: a computer program for detecting recent reductions in the effective population size using allele frequency data. J Hered 90:502–503

    Article  Google Scholar 

  • Poessel SA, Burdett CL, Boydston EE et al (2014) Roads influence movement and home ranges of a fragmentation-sensitive carnivore, the bobcat, in an urban landscape. Biol Conserv 180:224–232

    Article  Google Scholar 

  • Prange S, Gehrt SD, Wiggers EP (2004) Influences of anthropogenic resources on raccoon (Procyon lotor) movements and spatial distribution. J Mammal 85:483–490

    Article  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • R Core Team (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org/. Accessed 1 Jan 2019

  • Raymond M, Rousset F (1995) GENEPOP 1.2: population genetics software for exact tests and ecumenicism. J Hered 86:248–249

    Article  Google Scholar 

  • Reding DM, Bronikowski AM, Johnson WE, Clark WR (2012) Pleistocene and ecological effects on continental-scale genetic differentiation in the bobcat (Lynx rufus). Mol Ecol 21:3078–3093

    Article  PubMed  Google Scholar 

  • Reding DM, Carter CE, Hiller TL, Clark WR (2013a) Using population genetics for management of bobcats in Oregon. Wildl Soc Bull 37:342–351

    Article  Google Scholar 

  • Reding DM, Cushman SA, Gosselink TE, Clark WR (2013b) Linking movement behavior and fine-scale genetic structure to model landscape connectivity for bobcats (Lynx rufus). Landsc Ecol 28:471–486

    Article  Google Scholar 

  • Reed GC, Litvaitis JA, Callahan C et al (2016) Modeling landscape connectivity for bobcats using expert-opinion and empirically derived models: how well do they work? Anim Conserv 20:308–320

    Article  Google Scholar 

  • Reid AE (2006) Spatial genetic structure of four bobcat populations in the southeastern US. Dissertation, University of Georgia

  • Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:223–225

    Article  PubMed  Google Scholar 

  • Riley SPD, Sauvajot RM, Fuller TK et al (2003) Effects of urbanization and habitat fragmentation on bobcats and coyotes in southern California. Conserv Biol 17:566–576

    Article  Google Scholar 

  • Riley SPD, Pollinger JP, Sauvajot RM et al (2006) A southern California freeway is a physical and social barrier to gene flow in carnivores. Mol Ecol 15:1733–1741

    Article  CAS  PubMed  Google Scholar 

  • Riley SPD, Boydston EE, Crooks KR, Lyren LM (2010) Bobcats (Lynx rufus). In: Gehrt SD, Riley SPD, Cypher BL (eds) Urban carnivores: ecology, conflict, and conservation. Johns Hopkins University Press, Baltimore, pp 121–138

    Google Scholar 

  • Roberts NM, Crimmins SM (2010) Bobcat population status and management in North America: evidence of large-scale population increase. J Fish Wildl Manag 1:169–174

    Article  Google Scholar 

  • Ruell EW, Riley SPD, Douglas MR et al (2012) Urban habitat fragmentation and genetic population structure of bobcats in coastal southern California. Am Midl Nat 168:265–280

    Article  Google Scholar 

  • Safner T, Miller MP, McRae BH et al (2011) Comparison of Bayesian clustering and edge detection methods for inferring boundaries in landscape genetics. Int J Mol Sci 12:865–889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Samarasin P, Shuter BJ, Wright SI, Rodd FH (2017) The problem of estimating recent genetic connectivity in a changing world. Conserv Biol 31:126–135

    Article  PubMed  Google Scholar 

  • SAS Institute, Inc. (2016) JMP v13.0. SAS Institute, Inc., Cary

    Google Scholar 

  • Serieys LEK, Lea A, Pollinger JP et al (2014) Disease and freeways drive genetic change in urban bobcat populations. Evol Appl 8:75–92

    Article  PubMed  PubMed Central  Google Scholar 

  • Seton ET (1925) Lives of game animals: cats, wolves, and foxes. Doubleday, Garden City

    Google Scholar 

  • Tigas LA, Van Vuren DH, Sauvajot RM (2002) Behavioral responses of bobcats and coyotes to habitat fragmentation and corridors in an urban environment. Biol Conserv 108:299–306

    Article  Google Scholar 

  • Tucker MA, Böhning-Gaese K, Fagan WF et al (2018) Moving in the Anthropocene: global reductions in terrestrial mammalian movements. Science 359:466–469

    Article  CAS  PubMed  Google Scholar 

  • U.S. Census Bureau (2018) Quick facts. Retrieved from https://www.census.gov/quickfacts. Accessed 20 Mar 2019

  • Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538

    Article  CAS  Google Scholar 

  • Waples RS, Do C (2008) LDNE: a program for estimating effective population size from data on linkage disequilibrium. Mol Ecol Resour 8:753–756. https://doi.org/10.1111/j.1755-0998.2007.02061.x

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Patrick Tate at New Hampshire Fish and Game Department, Chris Bernier at Vermont Fish and Wildlife Department, Laura Conlee and Susan McCarthy at Massachusetts Division of Fisheries and Wildlife, Eric Jaccard and Florent Lemieux at Quebec Ministry of Forests, Wildlife, and Parks, Tom Crews, and Randy Shoe for providing samples, as well as Brittaney Buchanan, Amanda Cugno, and Casey Coupe for assistance with sample processing. RPC was supported in part, by a National Science Foundation Graduate Research Fellowship (Grant Number 147766). Partial funding was provided by the New Hampshire Agricultural Experiment Station. This is Scientific Contribution Number 2799. This work is supported by the United States Department of Agriculture National Institute of Food and Agriculture McIntire-Stennis Projects (233076 and 1009906). The microsatellite datasets analyzed for this study are available in the Dryad Repository, https://datadryad.org/resource/doi:10.5061/dryad.t77f1p4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rory P. Carroll.

Additional information

Clark L. Stevens in memoriam.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carroll, R.P., Litvaitis, M.K., Clements, S.J. et al. History matters: contemporary versus historic population structure of bobcats in the New England region, USA. Conserv Genet 20, 743–757 (2019). https://doi.org/10.1007/s10592-019-01170-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-019-01170-8

Keywords

Navigation