Skip to main content

Advertisement

Log in

Population genetics, speciation, and hybridization in Dicerandra (Lamiaceae), a North American Coastal Plain endemic, and implications for conservation

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

Understanding patterns of speciation and subsequent gene flow can clarify the evolutionary origins and history of species endemic to a specific geographic region and reveal genetic patterns important for conservation and management of rare species. We chose Dicerandra from the North American Coastal Plain biodiversity hotspot as a model to explore these concepts because of its endemism and the threatened status of most of its species. Using microsatellite-based population-level analyses of 32 populations from four of the annual species (D. linearifolia var. linearifolia, D. linearifolia var. robustior, D. fumella, D. odoratissima, and D. radfordiana), we addressed questions of genetic diversity, population structure, and hybridization. Strong support was found for the species-level recognition of the recently described D. fumella from the Florida panhandle. Dicerandra linearifolia var. linearifolia showed some regional cohesion of populations, but there was no consistent geographic pattern to the clustering of populations. Dicerandra radfordiana showed consistent clustering with proximate populations of D. odoratissima. Given that D. radfordiana is found at the southeastern extreme of the range of D. odoratissima, these populations may represent the early stages of speciation by isolation. While there are morphological and bioclimatic niche distinctions between D. odoratissima and D. radfordiana, there is no molecular support for a distinct D. radfordiana. Overall, there is modest genetic diversity found at the population level for all Dicerandra annuals. Microsatellite data support previously proposed hypotheses of hybridization between D. linearifolia var. linearifolia and D. odoratissima, but do not support such hypotheses for D. fumella and D. linearifolia var. robustior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Allen JM, Germain-Aubrey CC, Barve N, Neubig KM, Majure LC, Laffan SW, Mishler BD, Owens HL, Smith SA, Whitten WM, Abbott JR, Soltis DE, Guralnick R, Soltis PS (2019) Spatial phylogenetics of Florida vascular plants: the effects of calibration and uncertainty on diversity estimates. iScience 11:57–70

    Article  PubMed  Google Scholar 

  • Baldwin BG (2007) Adaptive radiation of shrubby tarweeds (Deinandra) in the California Islands parallels diversification of the Hawaiian silversword alliance (Compositae–Madiinae). Am J Bot 94:237–248

    Article  PubMed  Google Scholar 

  • Ball MC, Finnegan L, Manseau M et al (2010) Integrating multiple analytical approaches to spatially delineate and characterize genetic population structure: an application to boreal caribou (Rangifer tarandus caribou) in central Canada. Conserv Genet 11:21–31

    Article  Google Scholar 

  • Blischak P, Chifman J, Wolfe AD, Kubatko LS (2018) HyDe: a python package for genome-scale hybridization detection. Syst Biol 67:821–829

    Article  PubMed  PubMed Central  Google Scholar 

  • Castoe T, Poole A, GU W et al (2010) Rapid identification of thousands of copperhead snake (Agkistrodon contortrix) microsatellite loci from modest amounts of 454 shotgun genome sequence. Mol Ecol Resour 10:341–347

    Article  CAS  PubMed  Google Scholar 

  • Christman SP, Judd WS (1990) Notes on plants endemic to Florida scrub. Fla Sci 53:52–73

    Google Scholar 

  • Clivati D, Gitzendanner MA, Hilsdorf AWS, Araújo WL, Miranda VFO (2012) Microsatellite markers developed for Utricularia reniformis (Lentibulariaceae). Am J Bot 99:375–378

    Article  Google Scholar 

  • De Queiroz K (2007) Species concepts and species delimitation. Syst Biol 56:879–886

    Article  PubMed  Google Scholar 

  • Degnan JH (2018) Modeling hybridization under the network multispecies coalescent. Syst Biol 67:786–799

    Article  PubMed  PubMed Central  Google Scholar 

  • Earl D, VonHoldt B (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the method. Conserv Genet Resour 4:359–361

    Article  Google Scholar 

  • Edwards C, Soltis D, Soltis P (2008) Using patterns of genetic structure based on microsatellite loci to test hypotheses of current hybridization, ancient hybridization and incomplete lineage sorting in Conradina (Lamiaceae). Mol Ecol 17:5157–5174

    Article  CAS  PubMed  Google Scholar 

  • Estill J, Cruzan M (2001) Phytogeography of rare plant species endemic to the southeastern United States. Castanea 66:3–23

    Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Excoffier L, Lischer H (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567

    Article  PubMed  Google Scholar 

  • Folk RA, Soltis P, Soltis D, Guralnick R (2018a) New prospects in the detection and comparative analysis of hybridization in the tree of life. Am J Bot 105:364–375

    Article  PubMed  Google Scholar 

  • Folk R, Visger C, Soltis P, Soltis D, Guralnick R (2018b) Geographic range dynamics drove ancient hybridization in a lineage of angiosperms. Am Nat 192:171–187

    Article  PubMed  Google Scholar 

  • Givnish et al (2008) Origin, adaptive radiation and diversification of the Hawaiian lobeliads (Asterales: Campanulaceae). Proc R Soc B 276:407–416

    Article  PubMed Central  Google Scholar 

  • Gordon A (2008) Fastx-toolkit. http://hannonlab.cshl.edu/fastx_toolkit. Accessed Jan 2019

  • Hoban SM, Hauffe HC, Pérez-Espona S et al (2013) Bringing genetic diversity to the forefront of conservation policy and management. Conserv Genet Resour 5:593–598

    Article  Google Scholar 

  • Huck R (1987) Systematics and evolution of Dicerandra (Labiatae). Phanerogamarum Monogr 19:1–343

    Google Scholar 

  • Huck R (2010) Dicerandra fumella (Lamiaceae), a new species in the Florida panhandle and adjacent Alabama, with comments on the D. linearifolia complex. Rhodora 112:215–227

    Article  Google Scholar 

  • Jakobsson M, Rosenberg N (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23:1801–1806

    Article  CAS  PubMed  Google Scholar 

  • Jombart T (2008) Adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24:1403–1405

    Article  CAS  PubMed  Google Scholar 

  • Jost L (2008) GST and its relatives do not measure differentiation. Mol Ecol 17:4015–4026

    Article  PubMed  Google Scholar 

  • Jost L, Archer F, Flanagan S, Gaggiotti O, Hoban S, Latch E (2017) Differentiation measures for conservation genetics. Evol Appl 11:1139–1148

    Article  Google Scholar 

  • Kalinowski ST (2011) The computer program STRUCTURE does not reliably identify the main genetic clusters within species: simulations and implications for human population structure. Heredity 106:625–632

    Article  CAS  PubMed  Google Scholar 

  • Kruckeberg A, Rabinowitz D (1985) Biological aspects of endemism in higher plants. Annu Rev Ecol Syst 16:447–479

    Article  Google Scholar 

  • Laikre L (2010) Genetic diversity is overlooked in international conservation policy implementation. Conserv Genet 11:349–354

    Article  Google Scholar 

  • Laikre L et al (2010) Neglect of genetic diversity in implementation of the convention of biological diversity. Conserv Biol 24:86–88

    Article  PubMed  Google Scholar 

  • Meirmans PG (2015) Seven common mistakes in population genetics and how to avoid them. Mol Ecol 24:3223–3231

    Article  PubMed  Google Scholar 

  • Meirmans P, Hedrick P (2011) Assessing population structure: FST and related measures. Mol Ecol Resour 11:5–18

    Article  PubMed  Google Scholar 

  • Meirmans P, Van Tiederen P (2004) GENOTYPE and GENODIVE: two programs for the analysis of genetic diversity of asexual organisms. Mol Ecol Notes 4:792–794

    Article  Google Scholar 

  • Menges E (1992) Habitat preferences and response to disturbance for Dicerandra frutescens, a Lake Wales Ridge (Florida) endemic plant. Bull Torrey Bot Club 119:308–313

    Article  Google Scholar 

  • Myers R, Ewel J (1990) Ecosystems of Florida. Myers and Ewel (ed). University Presses of Florida, Gainesville, pp 35–69, 150–193

  • Nosil P (2008) Speciation with gene flow could be common. Mol Ecol 19:2103–2106

    Article  Google Scholar 

  • Noss RF, Platt WJ, Sorrie BA, Weakley AS, Means DB, Costanza J, Peet RK (2015) How global biodiversity hotspots may go unrecognized: lessons from the North American Coastal Plain. Divers Distrib 21:236–244

    Article  Google Scholar 

  • Oliveira LO, Huck RB, Gitzendanner MA, Judd WS, Soltis DE, Soltis PS (2007) Molecular phylogeny, biogeography, and systematics of Dicerandra (Lamiaceae), a genus endemic to the southeastern United States. Am J Bot 94:1017–1027

    Article  PubMed  Google Scholar 

  • Peakall R, Smouse P (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Petit RJ, Excoffier L (2009) Gene flow and species delimitation. Trends Ecol Evol 24:386–393

    Article  PubMed  Google Scholar 

  • Pollock LJ, Rosauer DF, Thornhill AH et al (2015) Phylogenetic diversity meets conservation policy: small areas are key to preserving eucalypt lineages. Philos Trans R Soc B 370:20140007

    Article  Google Scholar 

  • Pritchard J, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rieseberg L, Soltis D (1991) Phylogenetic consequences of cytoplasmic gene flow in plants. Evol Trends Plants 5:65–84

    Google Scholar 

  • Rosenberg N (2004) DISTRUCT: a program for the graphical display of population structure. Mol Ecol Notes 4:137–138

    Article  Google Scholar 

  • Rousset F (2008) GENEPOP: a complete re-implementation of the GENEPOP software for Windows and Linux. Mol Ecol Resour 8:103–106

    Article  PubMed  Google Scholar 

  • Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. In: Misener S, Krawetz SA (eds) Bioinformatics methods and protocols. Methods in molecular biology, vol 132. Humana Press, Totowa

    Google Scholar 

  • Schuelke M (2000) An economic method for the fluorescent labeling of PCR fragments. Nat Biotechnol 18:223–224

    Article  CAS  Google Scholar 

  • Swafford D (2003) PAUP* phylogenetic analysis using parsimony (*and other methods), version 4. Sinauer Associates, Sunderland

    Google Scholar 

  • USFWS (2007) Endangered and threatened wildlife and plants; 5-year review of 22 southeastern species. Fed Reg 72:20866–20868

    Google Scholar 

  • Wendel J, Doyle J (1998) Phylogenetic incongruence: window into genome history and molecular evolution. In: Soltis S, Doyle JJ (eds) Molecular systematics of plants II. Kluwer Academic Publishers, Norwell, pp 265–296

    Chapter  Google Scholar 

  • Wheeler Q, Meier R (2000) Species concepts and phylogenetic theory. Columbia University Press, West Sussex

    Google Scholar 

  • Wunderlin RP, Hanson BF (2011) Guide to the vascular plants of Florida, 3rd edn. University Press of Florida, Gainesville

    Google Scholar 

Download references

Acknowledgements

This work was supported by research grants from the Florida Native Plant Society and the University of Florida Biology Department (to A.C.P.). Additional support was provided by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1315138 and DGE-1842473 (to A.A.N).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Adam C. Payton or Andre A. Naranjo.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1713 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Payton, A.C., Naranjo, A.A., Judd, W. et al. Population genetics, speciation, and hybridization in Dicerandra (Lamiaceae), a North American Coastal Plain endemic, and implications for conservation. Conserv Genet 20, 531–543 (2019). https://doi.org/10.1007/s10592-019-01154-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-019-01154-8

Keywords

Navigation