Genetic legacies of translocation and relictual populations of American marten at the southeastern margin of their distribution

Abstract

American marten were extirpated from much of their native range in the northeastern United States as a result of land development and overharvesting before the mid-twentieth century. Based on occurrence records, recolonization in the late twentieth century was believed to have occurred via natural population expansion from two refugia: northern Maine and the eastern Adirondack Mountains of New York. Furthermore, a 1989–1991 reintroduction attempt in southern Vermont was originally declared unsuccessful, but marten have been rediscovered in southern Vermont since 2010. We used molecular techniques to resolve uncertain population histories and estimate contemporary levels of genetic variation and gene flow in marten populations in the northeastern United States. We sequenced a 320 bp segment of the control region (D-loop) of mtDNA in 112 individuals and amplified 10 microsatellite loci in 111 individuals. Five genetic clusters were identified in the northeastern United States based on the microsatellite data: (1) Maine, (2) New Hampshire, (3) eastern Adirondacks (New York), (4) western Adirondacks (New York), and (5) southern Vermont. Clustering and assignment tests suggest that individuals in southern Vermont are most likely to have originated in Maine—the primary source of the reintroduction. However, we were unable to rule out the possibility of a relict population in southern Vermont. Population expansion in New Hampshire appears to be the primary source of recolonization in northeastern Vermont. Additionally, dispersers from the reintroduction attempt may have spread to northeastern Vermont. Genetic diversity is lower in the entire northeastern United States than an interior population in Ontario, Canada. This study improves our understanding of population history in the northeastern United States. Relict populations of marten may have persisted through the nineteenth and twentieth centuries where they were believed to have been extirpated. Recognizing and conserving all of the distinct subsets of native genetic diversity in the region could promote long-term population health.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Aylward CM, Murdoch JD, Donovan TM, Kilpatrick CW, Bernier C, Katz J (2018) Estimating distribution and connectivity of recolonizing American marten in the northeastern United States using expert elicitation techniques. Anim Conserv. https://doi.org/10.1111/acv.12417

    Article  Google Scholar 

  2. Brooks RT (1996) Assessment of two camera-based systems for monitoring arboreal wildlife. Wildl Soc Bull 24:298–300

    Google Scholar 

  3. Broquet T, Johnson C, Petit E, Thompson I, Burel F, Fryxell JM (2006) Dispersal and genetic structure in the American marten, Martes americana. Mol Ecol 15:1689–1697

    Article  CAS  PubMed  Google Scholar 

  4. Brussard PF (1984) Geographic patterns and environmental gradients: the central-marginal model in Drosophila revisited. Ann Rev Ecol Syst 15:25–64

    Article  Google Scholar 

  5. Carroll C (2007) Interacting effects of climate change, landscape conversion, and harvest on carnivore populations at the range margin: Marten and Lynx in the northern Appalachians. Conserv Biol 21:1092–1104

    Article  PubMed  Google Scholar 

  6. Channell R, Lomolino MV (2000) Dynamic biogeography and conservation of endangered species. Nature 403:84–86

    Article  CAS  PubMed  Google Scholar 

  7. Chen C, Durand E, Forbes F, François O (2007) Bayesian clustering algorithms ascertaining spatial population structure: a new computer program and a comparison study. Mol Ecol Notes 7:747–756

    Article  Google Scholar 

  8. Clark TW, Anderson E, Douglas C, Strickland M (1987) Martes americana. Mamm Species 289:1–8

    Article  Google Scholar 

  9. Corander J, Marttinen P, Sirén J, Tang J (2008) Enhanced Bayesian modelling in BAPS software for learning genetic structures of populations. BMC Bioinform 9:539

    Article  CAS  Google Scholar 

  10. Cornuet JM, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144:2001–2014

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Daniel A, Hanson T (2001) Remote, rocky, barren, bushy, wild-woody wilderness: the natural history of the northeast. In: McGrory-Klyza C (ed) Wilderness comes home: rewilding the northeast. University Press of New England, Hanover, pp 27–46

    Google Scholar 

  12. Davis MH (1983) Post-release movements of introduced marten. J Wildl Manag 47:59–66

    Article  Google Scholar 

  13. Davis CS, Strobeck C (1998) Isolation, variability, and cross-species amplification of polymorphic microsatellite loci in the family Mustelidae. Mol Ecol 7:1776–1778

    Article  CAS  PubMed  Google Scholar 

  14. Distefano JJ, Royar KJ, Pence DM, Denoncour JE (1990) Marten recovery plan for Vermont. Vermont Fish and Wildlife Department, Waterbury

    Google Scholar 

  15. Drew RE, Hallett JG, Aubry KB, Cullings KW, Koepf SM, Zielinski WJ (2003) Conservation genetics of the fisher (Martes pennanti) based on mitochondrial DNA sequencing. Mol Ecol 12:51–62

    Article  CAS  PubMed  Google Scholar 

  16. Durand E, Jay F, Gaggiotti OE, François O (2009) Spatial inference of admixture proportions and secondary contact zones. Mol Biol Evol 26:1963–1973

    Article  CAS  Google Scholar 

  17. Earl DA, vonHoldt BM (2012) Structure harvester: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361

    Article  Google Scholar 

  18. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  Google Scholar 

  19. Excoffier L (2004) Patterns of DNA sequence diversity and genetic structure after a range expansion: lessons from the infinite-island model. Mol Ecol 13:853–864

    Article  CAS  Google Scholar 

  20. Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567

    Article  Google Scholar 

  21. Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Fleming MA, Ostrander EA, Cook JA (1999) Microsatellite markers for American mink (Mustela vison) and ermine (Mustela erminea). Mol Ecol 8:1352–1354

    Article  CAS  PubMed  Google Scholar 

  23. Foster DR, Donahue B, Kittredge DB, Motzkin G, Hall B, Turner BL, Chilton E (2008) New England’s forest landscape: ecological legacies and conservation patterns shaped by agrarian history. In: Redman CL, Foster DR (eds) Agrarian landscapes in transition. Oxford University Press, New York, pp 44–88

    Google Scholar 

  24. Fuller R (1987) Proposed endangered and threatened mammals. In: Laughlin S (ed), The endangered and threatened species of plants and animals in Vermont. Vermont Fish and Wildlife Department, Waterbury, pp. 42–54

    Google Scholar 

  25. Godin AJ (1977) Wild mammals of New England. Johns Hopkins University Press, Baltimore

    Google Scholar 

  26. Goudet (2015) Hierfstat, a package for R to compute and test hierarchical F-statistics. Mol Ecol Resour 5:184–186

    Article  Google Scholar 

  27. Grauer JA, Gilber JH, Woodford JE, Eklund D, Anderson S, Pauli JN (2017) Unexpected genetic composition of a reintroduced carnivore population. Biol Conserv 215:246–253

    Article  Google Scholar 

  28. Griekspoor A, Groothuis T (2006) A high-tech infusion for science. In: 4Peaks. mekentosj.com. 10 Dec 2012

  29. Guillot G, Mortier F, Estoup A (2005) GENELAND: a computer package for landscape genetics. Mol Ecol Notes 5:712–715

    Article  CAS  Google Scholar 

  30. Hagmeier EM (1956) Distribution of marten and fisher in North America. Can Field-Nat 70:149–168

    Google Scholar 

  31. Hapeman P, Latch EK, Fike JA, Rhodes OE, Kilpatrick CW (2011) Landscape genetics of fishers (Martes pennanti) in the Northeast: dispersal barriers and historical influences. J Hered 102:251–259

    Article  PubMed  Google Scholar 

  32. Hapeman P, Latch EK, Rhodes OE, Kilpatrick CW (2014) When recent and evolutionary histories meet: deciphering temporal events from contemporary patterns of mtDNA from fishers (Martes pennanti) in north-eastern North America. J Zool Syst Evol Res 52:331–337

    Article  Google Scholar 

  33. Kelly JR, Fuller TK, Kanter JJ (2009) Records of recovering American marten, Martes americana, in New Hampshire. Can Field-Nat 123:1–6

    Article  Google Scholar 

  34. Koen EL, Bowman J, Garroway CJ, Mills SC, Wilson PJ (2012) Landscape resistance and American marten gene flow. Landscape Ecol 27:29–43

    Article  Google Scholar 

  35. Krohn WB (2012) Distribution changes of American martens and fishers in eastern North America, 1699–2001. In: Aubry KB, Zielinski WJ, Raphael MG, Proulx G, Buskirk SW (eds) Biology and conservation of martens sables and fishers, a new synthesis. Cornell University Press, Ithaca, pp 58–73

    Google Scholar 

  36. Kyle CJ, Strobeck C (2003) Genetic homogeneity of Canadian mainland marten populations underscores the distinctiveness of Newfoundland pine martens (Martes americana atrata). Can J Zool 66:57–66

    Article  Google Scholar 

  37. Kyle CJ, Davis CS, Strobeck C (2000) Microsatellite analysis of North American pine marten (Martes americana) populations from the Yukon and Northwest Territories. Can J Zool 78:1150–1157

    Article  Google Scholar 

  38. Lambeck RJ (1997) Focal species: a multi-species umbrella for nature conservation. Conserv Biol 11:849–856

    Article  Google Scholar 

  39. Landguth EL, Cushman SA, Schwartz MK, McKelvey KS, Murphy M, Luikart G (2010) Quantifying the lag time to detect barriers in landscape genetics. Mol Ecol 19:4179–4191

    Article  CAS  PubMed  Google Scholar 

  40. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lesica P, Allendorf FW (1995) When are peripheral populations valuable for conservation? Conserv Biol 9:753–760

    Article  Google Scholar 

  42. Moruzzi TL, Royar KJ, Grove C, Brooks RT, Bernier C, Thompson FL, DeGraaf RM, Fuller TK (2003) Assessing an American marten, Martes americana, reintroduction in Vermont. Can Field-Nat 117:190–195

    Article  Google Scholar 

  43. Mowry RA, Schneider TM, Latch EK, Gompper ME, Beringer J, Eggert LS (2015) Genetics and the successful reintroduction of the Missouri river otter. Anim Conserv 18:196–206

    Article  Google Scholar 

  44. O’Brien P, Bernier C, Hapeman P (2018) A new record of an American marten (Martes americana) population in southern Vermont. Small Carniv Conserv 56:68–75

    Google Scholar 

  45. Paradis E (2010) Pegas: an R package for population genetics with an integrated-modular approach. Bioinformatics 26:419–420

    Article  CAS  PubMed  Google Scholar 

  46. Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol Syst 37:637–669

    Article  Google Scholar 

  47. Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  48. Petit RJ, El Mousadik A, Pons O (1998) Identifying populations for conservation on the basis of genetic markers. Conserv Biol 12:844–855

    Article  Google Scholar 

  49. Piry S, Luikart G, Cornuet JM (1999) BOTTLENECK: a program for detecting recent effective population size reductions from allele data frequencies. J Hered 90:502–503

    Article  Google Scholar 

  50. Piry S, Alapetite A, Cornuet JM, Paetkau D, Baudouin L, Estoup A (2004) GENECLASS2: a software for genetic assignment and first-generation migrant detection. J Hered 95:536–539

    Article  CAS  Google Scholar 

  51. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Raymond M, Rousset F (1995) GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249

    Article  Google Scholar 

  53. Rice WER (1989) Analyzing tables of statistical tests. Evolution 43:223–225

    Article  PubMed  Google Scholar 

  54. Royar KJ (1992) Monitoring reintroduced marten populations in Vermont. Vermont Fish and Wildlife Department, Waterbury

    Google Scholar 

  55. Schneider S, Excoffier L (1999) Estimation of past demographic parameters from the distribution of pairwise differences when the mutation rates vary among sites: application to human mitochondrial DNA. Genetics 152:1079–1089

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Schwartz M (2005) Guidelines on the use of molecular genetics in reintroduction programs. In: The EU LIFE-nature projects to guidelines for the reintroduction of threatened species. Caramanico Terme, Italy, pp 51–58

  57. Seddon PJ, Armstrong DP, Maloney RF (2007) Developing the science of reintroduction biology. Conserv Biol 21:303–312

    Article  PubMed  Google Scholar 

  58. Shields GF, Kocher TD (1991) Phylogenetic relationships of north American ursids based on analyses of mitochondrial DNA. Evolution 45:218–221

    Article  CAS  PubMed  Google Scholar 

  59. Silver H (1957) A history of New Hampshire game and furbearers. New Hampshire fish and game, survey report number 6. Concord, New Hampshire

    Google Scholar 

  60. Slough BG (1989) Movements and habitat use by transplanted marten in the Yukon Territory. J Wildl Manag 53:991–997

    Article  Google Scholar 

  61. Soutiere E, Coulter MW (1975) Interim report: reintroduction of Marten to the White Mountain National Forest, New Hampshire

  62. Stewart FEC, Volpe JP, Taylor JS, Bowman J, Thomas PJ, Pybus M, Fisher JT (2017) Distinguishing reintroduction from recolonization with genetic testing. Biol Conserv 214:242–249

    Article  Google Scholar 

  63. Trombulak S, Royar KJ (2001) Restoring the wild: Species recovery and reintroductions. In: McGrory-Klyza C (ed) Wilderness comes home: rewilding the northeast. University Press of New England, Hanover, pp 157–181

    Google Scholar 

  64. Tucker JM, Schwartz MK, Truex R, Wisely SM, Allendorf FW (2014) Sampling affects the detection of genetic subdivision and conservation implications for fisher in the Sierra Nevada. Conserv Genet 15:123–136

    Article  Google Scholar 

  65. Vincent IR, Farid A, Otieno CJ (2003) Variability of thirteen microsatellite markers in American mink (Mustela vison). Can J Anim Sci 83:597–599

    Article  CAS  Google Scholar 

  66. Walker CW, Vilà C, Landa A, Linden M, Ellegren H (2001) Genetic variation and population structure in Scandinavian wolverine (Gulo gulo) populations. Mol Ecol 10:53–63

    Article  CAS  PubMed  Google Scholar 

  67. Williams BW, Scribner KT (2010) Effects of multiple founder populations on spatial genetic structure of reintroduced American martens. Mol Ecol 19:227–240

    Article  PubMed  Google Scholar 

  68. Wolf CM, Griffith B, Reed C, Temple SA (1996) Avian and mammalian translocations: update and reanalysis of 1987 survey data. Conserv Biol 10:1142–1154

    Article  Google Scholar 

  69. Woods JG, Paetkau D, Lewis D, McLellan BN, Proctor M, Strobeck C (1999) Genetic tagging of free-ranging black and brown bears. Wildl Soc Bull 27:616–627

    Google Scholar 

Download references

Acknowledgements

We thank the Vermont Fish and Wildlife Department and University of Vermont for funding, and Chris Bernier (Vermont Fish and Wildlife Department), Kim Royar (Vermont Fish and Wildlife Department), Paul Jensen (New York Department of Environmental Conservation), Jillian Kilborn (New Hampshire Fish and Game Department), Alexej Sirén (University of Massachusetts Amherst), Cory Mosby (Maine Department of Inland Fisheries and Wildlife), and volunteer trappers from Maine for providing tissue samples for genetic analyses. Katherine O’Shea conducted preliminary microsatellite amplifications.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Cody M. Aylward.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3675 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Aylward, C.M., Murdoch, J.D. & Kilpatrick, C.W. Genetic legacies of translocation and relictual populations of American marten at the southeastern margin of their distribution. Conserv Genet 20, 275–286 (2019). https://doi.org/10.1007/s10592-018-1130-3

Download citation

Keywords

  • Genetic diversity
  • Genetic structure
  • Martes
  • Peripheral populations
  • Reintroduction
  • Relictual populations