Conservation genomics illuminates the adaptive uniqueness of North American gray wolves

Abstract

The resolution of conservation genetic analyses has been limited until recently due to technological and computational challenges associated with genotyping multiple loci at once. In this review, we focus on how the development of high-throughput genotyping methods have enabled conservation genomics studies of wolves in North America. The gray wolf (Canis lupus) historically had a Holarctic distribution across widely varying environments, yet during the early twentieth century many populations declined due to direct persecution and other anthropogenic disturbances. First, we discuss genetic substructure and adaptive uniqueness among genetically and environmentally defined wolf ecotypes. Second, we focus on the new conservation implications revealed by studies having increased genomic resolution of the dynamics of reintroduced and re-established wolves, specifically Mexican and Pacific Northwest wolves. Mexican wolves, a distinct subspecies of North American wolf that inhabit a small area within the southwestern U.S. and Mexico, remain endangered despite decades since a reintroduction program began. How biologists and management agencies use scientific data to define the historical range of Mexican wolves will be critical to future reintroduction efforts. In the Pacific Northwest, admixture occurs between the distinct and declining coastal wolf ecotype and the more abundant reintroduced interior wolves. If coastal wolves obtain protection, then the Pacific Northwest wolves may also warrant protection. Therefore, more precise policies are needed for the management of admixed populations when one source is protected. We recommend that future conservation efforts should provide full protection for distinct ecotypes, support scientifically rigorous definitions of historical range to inform restoration, and enhance the legal status of admixed populations.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Allendorf FW, Leary RF, Spruell P, Wenburg JK (2001) The problems with hybrids: setting conservation guidelines. Trends Ecol Evol 16:613–622. https://doi.org/10.1016/S0169-5347(01)02290-X

    Article  Google Scholar 

  2. Allendorf FW, Hohenlohe PA, Luikart G (2010) Genomics and the future of conservation genetics. Nat Rev Genet 11:697–709. https://doi.org/10.1038/nrg2844

    PubMed  Article  CAS  Google Scholar 

  3. Anderson TM, vonHoldt BM, Candille SI et al (2009) Molecular and evolutionary history of melanism in North American Gray Wolves. Science 323:1339–1343. https://doi.org/10.1126/science.1165448

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  4. Andrews KR, Good JM, Miller MR et al (2016) Harnessing the power of RADseq for ecological and evolutionary genomics. Nat Rev Genet 17:81–92. https://doi.org/10.1038/nrg.2015.28

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  5. Araiza M, Carrillo L, List R et al (2012) Consensus on criteria for potential areas for wolf reintroduction in Mexico. Conserv Biol 26:630–637. https://doi.org/10.1111/j.1523-1739.2012.01888.x

    PubMed  Article  Google Scholar 

  6. Arnold ML (2016) Divergence with genetic exchange. Oxford University Press, Oxford

    Google Scholar 

  7. Bay RA, Rose N, Barrett R et al (2017) predicting responses to contemporary environmental change using evolutionary response architectures. Am Nat 189:463–473. https://doi.org/10.1086/691233

    PubMed  Article  Google Scholar 

  8. Bailey V (1936) The Mammals and Life Zones of Oregon. North Am Fauna. https://doi.org/10.3996/nafa.55.0001

    Article  Google Scholar 

  9. Bernatchez L, Wellenreuther M, Araneda C et al (2017) Harnessing the power of genomics to secure the future of seafood. Trends Ecol Evol 32:665–680. https://doi.org/10.1016/j.tree.2017.06.010

    PubMed  Article  Google Scholar 

  10. Bogan MA, Melhop P (1983) Systematic relationships of gray wolves (Canis lupus) in southwestern North America. Occas Pap Mus Southwest Biol 1:21

    Google Scholar 

  11. Bonin A, Nicole F, Prompanon F et al (2007) Population adaptive index: a new method to help measure intraspecific genetic diversity and prioritize populations for conservation. Conserv Biol 21:697–708. https://doi.org/10.1111/j.1523-1739.2007.00685.x

    PubMed  Article  Google Scholar 

  12. Boyko AR, Quignon P, Li L et al (2010) A simple genetic architecture underlies morphological variation in dogs. Plos Biol 8:e1000451. https://doi.org/10.1371/journal.pbio.1000451

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  13. Brotton J, Wall G (1997) Climate change and the Bathurst caribou herd in the northwest territories. Canada Climatic Change 35:35–52. https://doi.org/10.1023/A:1005313315265

    Article  Google Scholar 

  14. Carmichael LE, Krizan J, Nagy JA et al (2007) Historical and ecological determinants of genetic structure in arctic canids. Mol Ecol 16:3466–3483. https://doi.org/10.1111/j.1365-294X.2007.03381.x

    PubMed  Article  CAS  Google Scholar 

  15. Carroll C, Fredrickson RJ, Lacy RC (2014) Developing metapopulation connectivity criteria from genetic and habitat data to recover the endangered Mexican wolf. Conserv Biol 28:76–86. https://doi.org/10.1111/cobi.12156

    PubMed  Article  Google Scholar 

  16. Carroll C, Phillips MK, Lopez-Gonzalez CA, Schumaker NH (2006) Defining recovery goals and strategies for endangered species: the wolf as a case study. BioSci 56:25–37. https://doi.org/10.1641/0006-3568(2006)056[0025:DRGASF]2.0.CO;2

    Article  Google Scholar 

  17. Catchen JM, Hohenlohe PA, Bernatchez L et al (2017) Unbroken: RADseq remains a powerful tool for understanding the genetics of adaptation in natural populations. Mol Ecol Resour 17:362–365. https://doi.org/10.1111/1755-0998.12669

    PubMed  Article  CAS  Google Scholar 

  18. Clark AG, Hubisz MJ, Bustamante CD et al (2005) Ascertainment bias in studies of human genome-wide polymorphism. Genome Res 15:1496–1502. https://doi.org/10.1101/gr.4107905

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  19. Coop G, Witonsky D, Di Rienzo A, Pritchard JK (2010) Using environmental correlations to identify loci underlying local adaptation. Genetics 185:1411–1423. https://doi.org/10.1534/genetics.110.114819

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  20. Cosart T, Beja-Pereira A, Chen S et al (2011) Exome-wide DNA capture and next generation sequencing in domestic and wild species. BMC Genom 12:347. https://doi.org/10.1186/1471-2164-12-347

    Article  CAS  Google Scholar 

  21. Cronin MA, Canovas A, Bannasch DL et al (2014) Single nucleotide polymorphism (SNP) variation of wolves (Canis lupus) in Southeast Alaska and comparison with wolves, dogs, and coyotes in North America. J Hered 106:26–36. https://doi.org/10.1093/jhered/esu075

    PubMed  Article  CAS  Google Scholar 

  22. Cronin MA, Cánovas A, Bannasch DL , Fredrickson et al (2015) Wolf subspecies: reply to Weckworth et al. J Hered 106:417–419. https://doi.org/10.1093/jhered/esv029

    PubMed  Article  Google Scholar 

  23. Darimont CT, Reimchen TE, Paquet PC (2003) Foraging behaviour by gray wolves on salmon streams in coastal British Columbia. Can J Zool 81:349–353. https://doi.org/10.1139/z02-246

    Article  Google Scholar 

  24. Ellegren H (2014) Genome sequencing and population genomics in non-model organisms. Trends Ecol Evol 29:51–63. https://doi.org/10.1016/j.tree.2013.09.008

    PubMed  Article  Google Scholar 

  25. Fan Z, Silva P, Gronau I et al (2016) Worldwide patterns of genomic variation and admixture in gray wolves. Genome Res 26:163–173. https://doi.org/10.1101/gr.197517.115

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  26. Fitak RR (2014) Conservation genomics of the endangered Mexican wolf and de novo SNP marker development in pumas using next-generation sequencing

  27. Foll M, Gaggiotti O (2008) A genome-scan method to identify selected loci appropriate for both dominant and codominant markers: a Bayesian perspective. Genetics 180:977–993. https://doi.org/10.1534/genetics.108.092221

    PubMed  PubMed Central  Article  Google Scholar 

  28. Frankham R (2005) Genetics and extinction. Biol Cons 126:131–140. https://doi.org/10.1016/j.biocon.2005.05.002

    Article  Google Scholar 

  29. Fredrickson RJ, Siminski P, Woolf M, Hedrick PW (2007) Genetic rescue and inbreeding depression in Mexican wolves. Proc R Soc B 274:2365–2371. https://doi.org/10.1098/rspb.2007.0785

    PubMed  Article  Google Scholar 

  30. Fredrickson RJ, Hedrick PW, Wayne RK et al (2015) mexican wolves are a valid subspecies and an appropriate conservation target. J Hered 106:415–416. https://doi.org/10.1093/jhered/esv028

    PubMed  Article  CAS  Google Scholar 

  31. Freedman AH, Gronau I, Schweizer RM et al (2014) Genome sequencing highlights the dynamic early history of dogs. PLoS Genet 10:e1004016. https://doi.org/10.1371/journal.pgen.1004016

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  32. Fritts SH (1983) Record dispersal by a wolf from Minnesota. J Mammal 64:166–167

    Article  Google Scholar 

  33. Funk WC, McKay JK, Hohenlohe PA, Allendorf FW (2012) Harnessing genomics for delineating conservation units. Trends Ecol Evol 27:489–496. https://doi.org/10.1016/j.tree.2012.05.012

    PubMed  PubMed Central  Article  Google Scholar 

  34. Gebremedhin B, Ficetola GF, Naderi S et al (2009) Frontiers in identifying conservation units: from neutral markers to adaptive genetic variation. Anim Conserv 12:107–109. https://doi.org/10.1111/j.1469-1795.2009.00255.x

    Article  Google Scholar 

  35. Geffen E, Anderson MJ, Wayne RK (2004) Climate and habitat barriers to dispersal in the highly mobile grey wolf. Mol Ecol 13:2481–2490. https://doi.org/10.1111/j.1365-294X.2004.02244.x

    PubMed  Article  CAS  Google Scholar 

  36. Gilg O, Kovacs KM, Aars J et al (2012) Climate change and the ecology and evolution of Arctic vertebrates. Ann NY Acad Sci 1249:166–190. https://doi.org/10.1111/j.1749-6632.2011.06412.x

    PubMed  Article  Google Scholar 

  37. Good JM (2012) Reduced representation methods for subgenomic enrichment and next-generation sequencing. In: Molecular methods for evolutionary genetics. Humana Press, Totowa, pp 85–103

    Google Scholar 

  38. Goodwin S, McPherson JD, McCombie WR (2016) Coming of age: ten years of next-generation sequencing technologies. Nat Rev Genet 17:333–351. https://doi.org/10.1038/nrg.2016.49

    PubMed  Article  CAS  Google Scholar 

  39. Grace J, Berninger F, Nagy L (2002) Impacts of climate change on the tree line. Ann Bot 90:537–544. https://doi.org/10.1093/aob/mcf222

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  40. Griffiths-Jones S (2004) The microRNA registry. Nucleic Acids Res 32:D109–D111. https://doi.org/10.1093/nar/gkh023

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  41. Grinnell J, Dixon JS, Linsdale JM (1937) Fur-bearing mammals of California: Their natural history, systematic status, and relations to man. University of California press

  42. Hailer F, Leonard JA (2008) Hybridization among three native North American Canis species in a region of natural sympatry. PLoS ONE 3:e3333. https://doi.org/10.1371/journal.pone.0003333

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  43. Hamilton JA, Miller JM (2016) Adaptive introgression as a resource for management and genetic conservation in a changing climate. Conserv Biol 30:33–41. https://doi.org/10.1111/cobi.12574

    PubMed  Article  Google Scholar 

  44. Heard DC, Williams TM (2011) Distribution of wolf dens on migratory caribou ranges in the Northwest Territories, Canada. Can J Zool 70:1504–1510. https://doi.org/10.1139/z92-207

    Article  Google Scholar 

  45. Hedrick PW (2013) Adaptive introgression in animals: examples and comparison to new mutation and standing variation as sources of adaptive variation. Mol Ecol 22:4606–4618. https://doi.org/10.1111/mec.12415

    PubMed  Article  Google Scholar 

  46. Hedrick PW, Miller PS, Geffen E, Wayne RK (1997) Genetic evaluation of the three captive mexican wolf lineages. Zoo Biol 16:47–69. https://doi.org/10.1002/(SICI)1098-2361(1997)16:1%3C47::AID-ZOO7%3E3.0.CO;2-B

    Article  Google Scholar 

  47. Heffelfinger JR, Nowak RM, Paetkau D (2017a) Clarifying historical range to aid recovery of the Mexican wolf. Jour Wild Mgmt 43:255. https://doi.org/10.1002/jwmg.21252

    Article  Google Scholar 

  48. Heffelfinger JR, Nowak RM, Paetkau D (2017b) Revisiting revising Mexican wolf historical range: a reply to Hendricks et al. J Wild Manag 81:1334–1337. https://doi.org/10.1002/jwmg.21371

    Article  Google Scholar 

  49. Hendricks SA, Clee PRS, Harrigan RJ et al (2016) Re-defining historical geographic range in species with sparse records: implications for the Mexican wolf reintroduction program. Biol Cons 194:48–57. https://doi.org/10.1016/j.biocon.2015.11.027

    Article  Google Scholar 

  50. Hendricks SA, Koblmüller S, Harrigan RJ et al (2017) Defense of an expanded historical range for the Mexican wolf: A comment on Heffelfinger et al. J Wild Mgmt 81:1331–1333. https://doi.org/10.1002/jwmg.21336

    Article  Google Scholar 

  51. Hendricks SA, Schweizer RM, Harrigan RJ et al (2018) Natural re-colonization and admixture of wolves (Canis lupus) in the US Pacific Northwest: challenges for the protection and management of endangered taxa. Heredity https://doi.org/10.1038/s41437-018-0094-x

    PubMed  Article  Google Scholar 

  52. Hilton C, Neville MJ, Karpe F (2013) MicroRNAs in adipose tissue: their role in adipogenesis and obesity. Int J Obes (Lond) 37:325–332. https://doi.org/10.1038/ijo.2012.59

    Article  CAS  Google Scholar 

  53. Jewell DM, Ashe M, Haskett M (2015) Re: Petition to List on an Emergency Basis the Alexander Archipelago Wolf (Canis Lupus Ligoni) as Threatened or Endangered Under the Endangered Species Act

  54. Jimenez MD, Bangs EE, Boyd DK et al (2017) Wolf dispersal in the Rocky Mountains, Western United States: 1993–2008. J Wild Manag 81:581–592. https://doi.org/10.1002/jwmg.21238

    Article  Google Scholar 

  55. Jones MR, Good JM (2016) Targeted capture in evolutionary and ecological genomics. Mol Ecol 25:185–202. https://doi.org/10.1111/mec.13304

    PubMed  Article  Google Scholar 

  56. Kranis A, Gheyas AA, Boschiero C et al (2013) Development of a high density 600K SNP genotyping array for chicken. BMC Genomics 14:59. https://doi.org/10.1186/1471-2164-14-59

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  57. Lachance J, Tishkoff SA (2013) SNP ascertainment bias in population genetic analyses: why it is important, and how to correct it. BioEssays 35:780–786. https://doi.org/10.1002/bies.201300014

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  58. Leonard JA, Vilà C, Wayne RK (2005) Legacy lost: genetic variability and population size of extirpated US grey wolves (Canis lupus). Mol Ecol 14:9–17. https://doi.org/10.1111/j.1365-294X.2004.02389.x

    PubMed  Article  Google Scholar 

  59. Lindblad-Toh K, Wade CM, Mikkelsen TS et al (2005) Genome sequence, comparative analysis and haplotype structure of the domestic dog. Nature Publishing Group 438:803–819. https://doi.org/10.1038/nature04338

    CAS  Article  Google Scholar 

  60. Lowry DB, Hoban S, Kelley JL et al (2016) Breaking RAD: An evaluation of the utility of restriction site associated DNA sequencing for genome scans of adaptation. Mol Ecol Resour. https://doi.org/10.1111/1755-0998.12596

    PubMed  PubMed Central  Article  Google Scholar 

  61. Mahlstein I, Knutti R (2012) September Arctic sea ice predicted to disappear near 2 °C global warming above present. J Geophys Res. https://doi.org/10.1029/2011JD016709

    Article  Google Scholar 

  62. Malomane DK, Reimer C, Weigend S et al (2018) Efficiency of different strategies to mitigate ascertainment bias when using SNP panels in diversity studies. BMC Genomics 19:22. https://doi.org/10.1186/s12864-017-4416-9

    PubMed  PubMed Central  Article  Google Scholar 

  63. Marguerat S, Bähler J (2009) RNA-seq: from technology to biology. Cell Mol Life Sci 67:569–579. https://doi.org/10.1007/s00018-009-0180-6

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  64. McKinney GJ, Larson WA, Seeb LW, Seeb JE (2017) RADseq provides unprecedented insights into molecular ecology and evolutionary genetics: comment on Breaking RAD by Lowry et al. (2016). Mol Ecol Resour 17:356–361. https://doi.org/10.1111/1755-0998.12649

    PubMed  Article  CAS  Google Scholar 

  65. McLaren W, Pritchard B, Rios D et al (2010) Deriving the consequences of genomic variants with the ensembl API and SNP effect predictor. Bioinformatics 26:2069–2070. https://doi.org/10.1093/bioinformatics/btq330

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  66. McMahon BJ, Teeling EC, Höglund J (2014) How and why should we implement genomics into conservation? Evol Appl 7:999–1007. https://doi.org/10.1111/eva.12193

    PubMed  PubMed Central  Article  Google Scholar 

  67. Mech LD (1970) The Wolf. American Museum of Natural History Natural History Press, Stroud

    Google Scholar 

  68. Mech LD (2004) Is climate change affecting wolf populations in the high arctic? Clim Change 67:87–93. https://doi.org/10.1007/s10584-004-7093-z

    Article  Google Scholar 

  69. Mech L (2005) Decline and recovery of a High Arctic wolf-prey system. 58(3):305–307

  70. Merrill SB, Mech LD (2000) Details of Extensive Movements by Minnesota Wolves (Canis lupus)

  71. Moreno JG, Matocq MD, Roy MS et al (1996) Relationships and genetic purity of the endangered Mexican wolf based on analysis of microsatellite loci. Conserv Biol 10:376–389. https://doi.org/10.1046/j.1523-1739.1996.10020376.x

    Article  Google Scholar 

  72. Muñoz Fuentes V, Darimont CT, Wayne RK et al (2009) Ecological factors drive differentiation in wolves from British Columbia. J Biogeogr 36:1516–1531. https://doi.org/10.1111/j.1365-2699.2008.02067.x

    Article  Google Scholar 

  73. Musiani M, Leonard JA, Cluff D et al (2007) Differentiation of tundra/taiga and boreal coniferous forest wolves: genetics, coat colour and association with migratory caribou. Mol Ecol 16:4149–4170. https://doi.org/10.1111/j.1365-294X.2007.03458.x

    PubMed  Article  CAS  Google Scholar 

  74. Newsome TM, Boitani L, Chapron G et al (2016) Food habits of the world’s grey wolves. Mamm Rev 46:255–269. https://doi.org/10.1111/mam.12067

    Article  Google Scholar 

  75. Nielsen R, Signorovitch J (2003) Correcting for ascertainment biases when analyzing SNP data: applications to the estimation of linkage disequilibrium. Theor Popul Biol 63:245–255. https://doi.org/10.1016/S0040-5809(03)00005-4

    PubMed  Article  Google Scholar 

  76. Notaro M, Mauss A, Williams JW (2012) Projected vegetation changes for the American Southwest: combined dynamic modeling and bioclimatic-envelope approach. Ecol Appl 22:1365–1388. https://doi.org/10.1890/11-1269.1

    PubMed  Article  Google Scholar 

  77. Nowak RM (1995) Another look at wolf taxonomy. In: Carbyn LN, Fritts SH, Seip DR (eds) Ecology and conservation of wolves in a changing. Occasional Publication No. 35, Edmonton, Alberta, pp 375–397

  78. Ouborg NJ, Pertoldi C, Loeschcke V et al (2010) Conservation genetics in transition to conservation genomics. Trends Genet 26:177–187. https://doi.org/10.1016/j.tig.2010.01.001

    PubMed  Article  CAS  Google Scholar 

  79. Oyler-McCance SJ, Oh KP, Langin KM, Aldridge CL (2016) A field ornithologist’s guide to genomics: practical considerations for ecology and conservation. The Auk 133:626–648. https://doi.org/10.1642/AUK-16-49.1

    Article  Google Scholar 

  80. Parsons D (1996) Case study: the Mexican wolf. N. M. J Science

  81. Pavlidis P, Živkovic D, Stamatakis A, Alachiotis N (2013) SweeD: likelihood-based detection of selective sweeps in thousands of genomes. Mol Biol Evol 30:2224–2234. https://doi.org/10.1093/molbev/mst112

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  82. Peters R, Ripple WJ, Wolf C et al (2018) Nature divided, scientists united: US–Mexico border wall threatens biodiversity and binational conservation. BioSci 24:171–176. https://doi.org/10.1093/biosci/biy063

    Article  Google Scholar 

  83. Pilot M, Jedrzejewski W, Branicki W et al (2006) Ecological factors influence population genetic structure of European grey wolves. Mol Ecol 15:4533–4553. https://doi.org/10.1111/j.1365-294X.2006.03110.x

    PubMed  Article  CAS  Google Scholar 

  84. Pilot M, Branicki W, Jędrzejewski W et al (2010) Phylogeographic history of grey wolves in Europe. BMC Evol Biol 10:104. https://doi.org/10.1186/1471-2148-10-104

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  85. Pilot M, Greco C, vonHoldt BM et al (2014) Genome-wide signatures of population bottlenecks and diversifying selection in European wolves. Heredity 112:428–442. https://doi.org/10.1038/hdy.2013.122

    PubMed  Article  CAS  Google Scholar 

  86. Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecolo Modell 190:231–259

    Article  Google Scholar 

  87. Räikkönen J, Vucetich JA, Peterson RO, Nelson MP (2009) Congenital bone deformities and the inbred wolves (Canis lupus) of Isle Royale. Biol Cons 142:1025–1031. https://doi.org/10.1016/j.biocon.2009.01.014

    Article  Google Scholar 

  88. Razgour O, Taggart JB, Manel S et al (2017) An integrated framework to identify wildlife populations under threat from climate change. Mol Ecol Resour 91:2437. https://doi.org/10.1111/1755-0998.12694

    Article  Google Scholar 

  89. Reed JE, Ballard WB, Gipson PS et al (2006) Diets of Free-Ranging Mexican Gray Wolves in Arizona and New Mexico. Wildl Soc Bull 34:1127–1133. https://doi.org/10.2193/0091-7648(2006)34%5B1127:DOFMGW%5D2.0.CO;2

    Article  Google Scholar 

  90. Reimand J, Kull M, Peterson H et al (2007) g:Profiler—a web-based toolset for functional profiling of gene lists from large-scale experiments. Nucleic Acids Res 35:W193–W200. https://doi.org/10.1093/nar/gkm226

    PubMed  PubMed Central  Article  Google Scholar 

  91. Reimand J, Arak T, Vilo J (2011) g:Profiler—a web server for functional interpretation of gene lists (2011 update). Nucleic Acids Res 39:W307–W315. https://doi.org/10.1093/nar/gkr378

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  92. Robinson JA, Vecchyo DO-D, Fan Z et al (2016) genomic flatlining in the endangered island fox. Curr Biol 1–25. https://doi.org/10.1016/j.cub.2016.02.062

  93. Rosenblum EB, Novembre J (2007) Ascertainment bias in spatially structured populations: a case study in the eastern fence lizard. J Hered 98:331–336. https://doi.org/10.1093/jhered/esm031

    PubMed  Article  Google Scholar 

  94. Roy MS, Geffen E, Smith D et al (1994) Patterns of differentiation and hybridization in North American wolflike canids, revealed by analysis of microsatellite loci. Mol Biol Evol 11:553–570. https://doi.org/10.1093/oxfordjournals.molbev.a040137

    PubMed  CAS  Article  Google Scholar 

  95. Schweizer RM, Robinson JA, Harrigan RJ et al (2016a) Targeted capture and resequencing of 1040 genes reveal environmentally driven functional variation in grey wolves. Mol Ecol 25:357–379. https://doi.org/10.1111/mec.13467

    PubMed  Article  CAS  Google Scholar 

  96. Schweizer RM, vonHoldt BM, Harrigan RJ et al (2016b) Genetic subdivision and candidate genes under selection in North American grey wolves. Mol Ecol 25:380–402. https://doi.org/10.1111/mec.13364

    PubMed  Article  CAS  Google Scholar 

  97. Shafer ABA, Wolf JBW, Alves PC et al (2015) Genomics and the challenging translation into conservation practice. Trends Ecol Evol 30:78–87. https://doi.org/10.1016/j.tree.2014.11.009

    PubMed  Article  Google Scholar 

  98. Shaw H (1983) The Wolf in the Southwest: the making of an endangered species. University of Arizona Press

  99. Slater GJ, Dumont ER, Van Valkenburgh B (2009) Implications of predatory specialization for cranial form and function in canids. J Zool 278:181–188. https://doi.org/10.1111/j.1469-7998.2009.00567.x

    Article  Google Scholar 

  100. Smith DW, Peterson RO, Houston D (2003) Yellowstone after Wolves. Bioscience 53:330–340

    Article  Google Scholar 

  101. Sneed PG (2001) The feasibility of gray wolf reintroduction to the Grand Canyon ecoregion

  102. Steiner CC, Putnam AS, Hoeck PEA, Ryder OA (2013) Conservation genomics of threatened animal Species. Ann Rev Anim Biosci 1:261–281. https://doi.org/10.1146/annurev-animal-031412-103636

    Article  Google Scholar 

  103. Storey KB (2015) Regulation of hypometabolism: insights into epigenetic controls. J Exp Biol 218:150–159. https://doi.org/10.1242/jeb.106369

    PubMed  Article  Google Scholar 

  104. Stronen AV, Navid EL, Quinn MS et al (2014) Population genetic structure of gray wolves (Canis lupus) in a marine archipelago suggests island-mainland differentiation consistent with dietary niche. BMC Ecol 14:11. https://doi.org/10.1186/1472-6785-14-11

    PubMed  PubMed Central  Article  Google Scholar 

  105. U.S. Fish and Wildlife Service Endangered and threatened wildlife and plants; removing the gray wolf (Canis lupus) from the list of endangered and threatened wild- life and maintaining protections for the Mexican wolf (Canis lupus baileyi) by listing it as endangered

  106. Vilà C, Amorim IR, Leonard JA et al (1999) Mitochondrial DNA phylogeography and population history of the grey wolf (Canis lupus). Mol Ecol 8:2089–2103. https://doi.org/10.1046/j.1365-294x.1999.00825.x

    PubMed  Article  Google Scholar 

  107. Verts BJ, Carraway LN (1998) Land Mammals of Oregon. Univ of California Press

  108. vonHoldt BM, Stahler DR, Bangs EE et al (2010) A novel assessment of population structure and gene flow in grey wolf populations of the Northern Rocky Mountains of the United States. Mol Ecol 19:4412–4427. https://doi.org/10.1111/j.1365-294X.2010.04769.x

    PubMed  Article  Google Scholar 

  109. vonHoldt BM, Pollinger JP, Earl DA et al (2011) A genome-wide perspective on the evolutionary history of enigmatic wolf-like canids. Genome Res 21:1294–1305. https://doi.org/10.1101/gr.116301.110

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  110. vonHoldt BM, Cahill JA, Fan Z et al (2016) Whole-genome sequence analysis shows that two endemic species of North American wolf are admixtures of the coyote and gray wolf. Science Advances 2:e1501714–e1501714. https://doi.org/10.1126/sciadv.1501714

    PubMed  PubMed Central  Article  Google Scholar 

  111. vonHoldt BM, Brzeski KE, Wilcove DS, Rutledge LY (2017) Redefining the role of admixture and genomics in species conservation. Conserv Lett 16:613. https://doi.org/10.1111/conl.12371

    Article  Google Scholar 

  112. Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10:57–63. https://doi.org/10.1038/nrg2484

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  113. Wayne RK, Shaffer HB (2016) Hybridization and endangered species protection in the molecular era. Mol Ecol 25:2680–2689. https://doi.org/10.1111/mec.13642

    PubMed  Article  Google Scholar 

  114. Wayne RK, Lehman N, Allard MW, Honeycutt RL (1992) Mitochondrial DNA variability of the gray wolf: genetic consequences of population decline and habitat fragmentation. Conserv Biol 6:559–569. https://doi.org/10.1046/j.1523-1739.1992.06040559.x

    Article  Google Scholar 

  115. Weckworth BV, Talbot S, Sage GK et al (2005) A signal for independent coastal and continental histories among North American wolves. Mol Ecol 14:917–931. https://doi.org/10.1111/j.1365-294X.2005.02461.x

    PubMed  Article  CAS  Google Scholar 

  116. Weckworth BV, Dawson NG, Talbot SL, Cook JA (2015) Genetic distinctiveness of Alexander Archipelago Wolves (Canis lupus ligoni). J Hered 106:412–414. https://doi.org/10.1093/jhered/esv026

    PubMed  Article  Google Scholar 

  117. Wilhelm BT, Landry J-R (2009) RNA-Seq—quantitative measurement of expression through massively parallel RNA-sequencing. Methods 48:249–257. https://doi.org/10.1016/j.ymeth.2009.03.016

    PubMed  Article  CAS  Google Scholar 

  118. Wu C-W, Biggar KK, Storey KB (2013) Dehydration mediated microRNA response in the African clawed frog Xenopus laevis. Gene 529:269–275. https://doi.org/10.1016/j.gene.2013.07.064

    PubMed  Article  CAS  Google Scholar 

  119. Young S, Goldman EA (1944) The Wolves of North America. 2 vols. American Wildlife Institute, Washington

    Google Scholar 

  120. Zaragosi L-E, Wdziekonski B, Brigand KL et al (2011) Small RNA sequencing reveals miR-642a-3p as a novel adipocyte-specific microRNA and miR-30 as a key regulator of human adipogenesis. Genome Biol 12:R64. https://doi.org/10.1186/gb-2011-12-7-r64

    PubMed  PubMed Central  Article  CAS  Google Scholar 

Download references

Acknowledgements

Support was provided to SAH by the National Institute of Health (P30GM103324); NSF (DEB-1316549); and the Bioinformatics and Computational Biology program at the University of Idaho, and to RMS by the NSF (DGE-1144087, DGE-0707424, 1612859).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Robert K. Wayne.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hendricks, S.A., Schweizer, R.M. & Wayne, R.K. Conservation genomics illuminates the adaptive uniqueness of North American gray wolves. Conserv Genet 20, 29–43 (2019). https://doi.org/10.1007/s10592-018-1118-z

Download citation

Keywords

  • Adaptive potential
  • Admixture
  • Canis lupus
  • Conservation genomics
  • Ecological units
  • Historical range