Advertisement

Conservation Genetics

, Volume 20, Issue 1, pp 29–43 | Cite as

Conservation genomics illuminates the adaptive uniqueness of North American gray wolves

  • Sarah A. Hendricks
  • Rena M. Schweizer
  • Robert K. WayneEmail author
Review Article

Abstract

The resolution of conservation genetic analyses has been limited until recently due to technological and computational challenges associated with genotyping multiple loci at once. In this review, we focus on how the development of high-throughput genotyping methods have enabled conservation genomics studies of wolves in North America. The gray wolf (Canis lupus) historically had a Holarctic distribution across widely varying environments, yet during the early twentieth century many populations declined due to direct persecution and other anthropogenic disturbances. First, we discuss genetic substructure and adaptive uniqueness among genetically and environmentally defined wolf ecotypes. Second, we focus on the new conservation implications revealed by studies having increased genomic resolution of the dynamics of reintroduced and re-established wolves, specifically Mexican and Pacific Northwest wolves. Mexican wolves, a distinct subspecies of North American wolf that inhabit a small area within the southwestern U.S. and Mexico, remain endangered despite decades since a reintroduction program began. How biologists and management agencies use scientific data to define the historical range of Mexican wolves will be critical to future reintroduction efforts. In the Pacific Northwest, admixture occurs between the distinct and declining coastal wolf ecotype and the more abundant reintroduced interior wolves. If coastal wolves obtain protection, then the Pacific Northwest wolves may also warrant protection. Therefore, more precise policies are needed for the management of admixed populations when one source is protected. We recommend that future conservation efforts should provide full protection for distinct ecotypes, support scientifically rigorous definitions of historical range to inform restoration, and enhance the legal status of admixed populations.

Keywords

Adaptive potential Admixture Canis lupus Conservation genomics Ecological units Historical range 

Notes

Acknowledgements

Support was provided to SAH by the National Institute of Health (P30GM103324); NSF (DEB-1316549); and the Bioinformatics and Computational Biology program at the University of Idaho, and to RMS by the NSF (DGE-1144087, DGE-0707424, 1612859).

References

  1. Allendorf FW, Leary RF, Spruell P, Wenburg JK (2001) The problems with hybrids: setting conservation guidelines. Trends Ecol Evol 16:613–622.  https://doi.org/10.1016/S0169-5347(01)02290-X CrossRefGoogle Scholar
  2. Allendorf FW, Hohenlohe PA, Luikart G (2010) Genomics and the future of conservation genetics. Nat Rev Genet 11:697–709.  https://doi.org/10.1038/nrg2844 PubMedCrossRefGoogle Scholar
  3. Anderson TM, vonHoldt BM, Candille SI et al (2009) Molecular and evolutionary history of melanism in North American Gray Wolves. Science 323:1339–1343.  https://doi.org/10.1126/science.1165448 PubMedPubMedCentralCrossRefGoogle Scholar
  4. Andrews KR, Good JM, Miller MR et al (2016) Harnessing the power of RADseq for ecological and evolutionary genomics. Nat Rev Genet 17:81–92.  https://doi.org/10.1038/nrg.2015.28 PubMedPubMedCentralCrossRefGoogle Scholar
  5. Araiza M, Carrillo L, List R et al (2012) Consensus on criteria for potential areas for wolf reintroduction in Mexico. Conserv Biol 26:630–637.  https://doi.org/10.1111/j.1523-1739.2012.01888.x PubMedCrossRefGoogle Scholar
  6. Arnold ML (2016) Divergence with genetic exchange. Oxford University Press, OxfordGoogle Scholar
  7. Bay RA, Rose N, Barrett R et al (2017) predicting responses to contemporary environmental change using evolutionary response architectures. Am Nat 189:463–473.  https://doi.org/10.1086/691233 PubMedCrossRefGoogle Scholar
  8. Bailey V (1936) The Mammals and Life Zones of Oregon. North Am Fauna.  https://doi.org/10.3996/nafa.55.0001 CrossRefGoogle Scholar
  9. Bernatchez L, Wellenreuther M, Araneda C et al (2017) Harnessing the power of genomics to secure the future of seafood. Trends Ecol Evol 32:665–680.  https://doi.org/10.1016/j.tree.2017.06.010 PubMedCrossRefGoogle Scholar
  10. Bogan MA, Melhop P (1983) Systematic relationships of gray wolves (Canis lupus) in southwestern North America. Occas Pap Mus Southwest Biol 1:21Google Scholar
  11. Bonin A, Nicole F, Prompanon F et al (2007) Population adaptive index: a new method to help measure intraspecific genetic diversity and prioritize populations for conservation. Conserv Biol 21:697–708.  https://doi.org/10.1111/j.1523-1739.2007.00685.x PubMedCrossRefGoogle Scholar
  12. Boyko AR, Quignon P, Li L et al (2010) A simple genetic architecture underlies morphological variation in dogs. Plos Biol 8:e1000451.  https://doi.org/10.1371/journal.pbio.1000451 PubMedPubMedCentralCrossRefGoogle Scholar
  13. Brotton J, Wall G (1997) Climate change and the Bathurst caribou herd in the northwest territories. Canada Climatic Change 35:35–52.  https://doi.org/10.1023/A:1005313315265 CrossRefGoogle Scholar
  14. Carmichael LE, Krizan J, Nagy JA et al (2007) Historical and ecological determinants of genetic structure in arctic canids. Mol Ecol 16:3466–3483.  https://doi.org/10.1111/j.1365-294X.2007.03381.x PubMedCrossRefGoogle Scholar
  15. Carroll C, Fredrickson RJ, Lacy RC (2014) Developing metapopulation connectivity criteria from genetic and habitat data to recover the endangered Mexican wolf. Conserv Biol 28:76–86.  https://doi.org/10.1111/cobi.12156 PubMedCrossRefGoogle Scholar
  16. Carroll C, Phillips MK, Lopez-Gonzalez CA, Schumaker NH (2006) Defining recovery goals and strategies for endangered species: the wolf as a case study. BioSci 56:25–37.  https://doi.org/10.1641/0006-3568(2006)056[0025:DRGASF]2.0.CO;2 CrossRefGoogle Scholar
  17. Catchen JM, Hohenlohe PA, Bernatchez L et al (2017) Unbroken: RADseq remains a powerful tool for understanding the genetics of adaptation in natural populations. Mol Ecol Resour 17:362–365.  https://doi.org/10.1111/1755-0998.12669 PubMedCrossRefGoogle Scholar
  18. Clark AG, Hubisz MJ, Bustamante CD et al (2005) Ascertainment bias in studies of human genome-wide polymorphism. Genome Res 15:1496–1502.  https://doi.org/10.1101/gr.4107905 PubMedPubMedCentralCrossRefGoogle Scholar
  19. Coop G, Witonsky D, Di Rienzo A, Pritchard JK (2010) Using environmental correlations to identify loci underlying local adaptation. Genetics 185:1411–1423.  https://doi.org/10.1534/genetics.110.114819 PubMedPubMedCentralCrossRefGoogle Scholar
  20. Cosart T, Beja-Pereira A, Chen S et al (2011) Exome-wide DNA capture and next generation sequencing in domestic and wild species. BMC Genom 12:347.  https://doi.org/10.1186/1471-2164-12-347 CrossRefGoogle Scholar
  21. Cronin MA, Canovas A, Bannasch DL et al (2014) Single nucleotide polymorphism (SNP) variation of wolves (Canis lupus) in Southeast Alaska and comparison with wolves, dogs, and coyotes in North America. J Hered 106:26–36.  https://doi.org/10.1093/jhered/esu075 PubMedCrossRefGoogle Scholar
  22. Cronin MA, Cánovas A, Bannasch DL , Fredrickson et al (2015) Wolf subspecies: reply to Weckworth et al. J Hered 106:417–419.  https://doi.org/10.1093/jhered/esv029 PubMedCrossRefGoogle Scholar
  23. Darimont CT, Reimchen TE, Paquet PC (2003) Foraging behaviour by gray wolves on salmon streams in coastal British Columbia. Can J Zool 81:349–353.  https://doi.org/10.1139/z02-246 CrossRefGoogle Scholar
  24. Ellegren H (2014) Genome sequencing and population genomics in non-model organisms. Trends Ecol Evol 29:51–63.  https://doi.org/10.1016/j.tree.2013.09.008 PubMedCrossRefGoogle Scholar
  25. Fan Z, Silva P, Gronau I et al (2016) Worldwide patterns of genomic variation and admixture in gray wolves. Genome Res 26:163–173.  https://doi.org/10.1101/gr.197517.115 PubMedPubMedCentralCrossRefGoogle Scholar
  26. Fitak RR (2014) Conservation genomics of the endangered Mexican wolf and de novo SNP marker development in pumas using next-generation sequencingGoogle Scholar
  27. Foll M, Gaggiotti O (2008) A genome-scan method to identify selected loci appropriate for both dominant and codominant markers: a Bayesian perspective. Genetics 180:977–993.  https://doi.org/10.1534/genetics.108.092221 PubMedPubMedCentralCrossRefGoogle Scholar
  28. Frankham R (2005) Genetics and extinction. Biol Cons 126:131–140.  https://doi.org/10.1016/j.biocon.2005.05.002 CrossRefGoogle Scholar
  29. Fredrickson RJ, Siminski P, Woolf M, Hedrick PW (2007) Genetic rescue and inbreeding depression in Mexican wolves. Proc R Soc B 274:2365–2371.  https://doi.org/10.1098/rspb.2007.0785 PubMedCrossRefGoogle Scholar
  30. Fredrickson RJ, Hedrick PW, Wayne RK et al (2015) mexican wolves are a valid subspecies and an appropriate conservation target. J Hered 106:415–416.  https://doi.org/10.1093/jhered/esv028 PubMedCrossRefGoogle Scholar
  31. Freedman AH, Gronau I, Schweizer RM et al (2014) Genome sequencing highlights the dynamic early history of dogs. PLoS Genet 10:e1004016.  https://doi.org/10.1371/journal.pgen.1004016 PubMedPubMedCentralCrossRefGoogle Scholar
  32. Fritts SH (1983) Record dispersal by a wolf from Minnesota. J Mammal 64:166–167CrossRefGoogle Scholar
  33. Funk WC, McKay JK, Hohenlohe PA, Allendorf FW (2012) Harnessing genomics for delineating conservation units. Trends Ecol Evol 27:489–496.  https://doi.org/10.1016/j.tree.2012.05.012 PubMedPubMedCentralCrossRefGoogle Scholar
  34. Gebremedhin B, Ficetola GF, Naderi S et al (2009) Frontiers in identifying conservation units: from neutral markers to adaptive genetic variation. Anim Conserv 12:107–109.  https://doi.org/10.1111/j.1469-1795.2009.00255.x CrossRefGoogle Scholar
  35. Geffen E, Anderson MJ, Wayne RK (2004) Climate and habitat barriers to dispersal in the highly mobile grey wolf. Mol Ecol 13:2481–2490.  https://doi.org/10.1111/j.1365-294X.2004.02244.x PubMedCrossRefGoogle Scholar
  36. Gilg O, Kovacs KM, Aars J et al (2012) Climate change and the ecology and evolution of Arctic vertebrates. Ann NY Acad Sci 1249:166–190.  https://doi.org/10.1111/j.1749-6632.2011.06412.x PubMedCrossRefGoogle Scholar
  37. Good JM (2012) Reduced representation methods for subgenomic enrichment and next-generation sequencing. In: Molecular methods for evolutionary genetics. Humana Press, Totowa, pp 85–103CrossRefGoogle Scholar
  38. Goodwin S, McPherson JD, McCombie WR (2016) Coming of age: ten years of next-generation sequencing technologies. Nat Rev Genet 17:333–351.  https://doi.org/10.1038/nrg.2016.49 PubMedCrossRefGoogle Scholar
  39. Grace J, Berninger F, Nagy L (2002) Impacts of climate change on the tree line. Ann Bot 90:537–544.  https://doi.org/10.1093/aob/mcf222 PubMedPubMedCentralCrossRefGoogle Scholar
  40. Griffiths-Jones S (2004) The microRNA registry. Nucleic Acids Res 32:D109–D111.  https://doi.org/10.1093/nar/gkh023 PubMedPubMedCentralCrossRefGoogle Scholar
  41. Grinnell J, Dixon JS, Linsdale JM (1937) Fur-bearing mammals of California: Their natural history, systematic status, and relations to man. University of California pressGoogle Scholar
  42. Hailer F, Leonard JA (2008) Hybridization among three native North American Canis species in a region of natural sympatry. PLoS ONE 3:e3333.  https://doi.org/10.1371/journal.pone.0003333 PubMedPubMedCentralCrossRefGoogle Scholar
  43. Hamilton JA, Miller JM (2016) Adaptive introgression as a resource for management and genetic conservation in a changing climate. Conserv Biol 30:33–41.  https://doi.org/10.1111/cobi.12574 PubMedCrossRefGoogle Scholar
  44. Heard DC, Williams TM (2011) Distribution of wolf dens on migratory caribou ranges in the Northwest Territories, Canada. Can J Zool 70:1504–1510.  https://doi.org/10.1139/z92-207 CrossRefGoogle Scholar
  45. Hedrick PW (2013) Adaptive introgression in animals: examples and comparison to new mutation and standing variation as sources of adaptive variation. Mol Ecol 22:4606–4618.  https://doi.org/10.1111/mec.12415 PubMedCrossRefGoogle Scholar
  46. Hedrick PW, Miller PS, Geffen E, Wayne RK (1997) Genetic evaluation of the three captive mexican wolf lineages. Zoo Biol 16:47–69.  https://doi.org/10.1002/(SICI)1098-2361(1997)16:1%3C47::AID-ZOO7%3E3.0.CO;2-B CrossRefGoogle Scholar
  47. Heffelfinger JR, Nowak RM, Paetkau D (2017a) Clarifying historical range to aid recovery of the Mexican wolf. Jour Wild Mgmt 43:255.  https://doi.org/10.1002/jwmg.21252 CrossRefGoogle Scholar
  48. Heffelfinger JR, Nowak RM, Paetkau D (2017b) Revisiting revising Mexican wolf historical range: a reply to Hendricks et al. J Wild Manag 81:1334–1337.  https://doi.org/10.1002/jwmg.21371 CrossRefGoogle Scholar
  49. Hendricks SA, Clee PRS, Harrigan RJ et al (2016) Re-defining historical geographic range in species with sparse records: implications for the Mexican wolf reintroduction program. Biol Cons 194:48–57.  https://doi.org/10.1016/j.biocon.2015.11.027 CrossRefGoogle Scholar
  50. Hendricks SA, Koblmüller S, Harrigan RJ et al (2017) Defense of an expanded historical range for the Mexican wolf: A comment on Heffelfinger et al. J Wild Mgmt 81:1331–1333.  https://doi.org/10.1002/jwmg.21336 CrossRefGoogle Scholar
  51. Hendricks SA, Schweizer RM, Harrigan RJ et al (2018) Natural re-colonization and admixture of wolves (Canis lupus) in the US Pacific Northwest: challenges for the protection and management of endangered taxa. Heredity  https://doi.org/10.1038/s41437-018-0094-x PubMedCrossRefGoogle Scholar
  52. Hilton C, Neville MJ, Karpe F (2013) MicroRNAs in adipose tissue: their role in adipogenesis and obesity. Int J Obes (Lond) 37:325–332.  https://doi.org/10.1038/ijo.2012.59 CrossRefGoogle Scholar
  53. Jewell DM, Ashe M, Haskett M (2015) Re: Petition to List on an Emergency Basis the Alexander Archipelago Wolf (Canis Lupus Ligoni) as Threatened or Endangered Under the Endangered Species ActGoogle Scholar
  54. Jimenez MD, Bangs EE, Boyd DK et al (2017) Wolf dispersal in the Rocky Mountains, Western United States: 1993–2008. J Wild Manag 81:581–592.  https://doi.org/10.1002/jwmg.21238 CrossRefGoogle Scholar
  55. Jones MR, Good JM (2016) Targeted capture in evolutionary and ecological genomics. Mol Ecol 25:185–202.  https://doi.org/10.1111/mec.13304 PubMedCrossRefGoogle Scholar
  56. Kranis A, Gheyas AA, Boschiero C et al (2013) Development of a high density 600K SNP genotyping array for chicken. BMC Genomics 14:59.  https://doi.org/10.1186/1471-2164-14-59 PubMedPubMedCentralCrossRefGoogle Scholar
  57. Lachance J, Tishkoff SA (2013) SNP ascertainment bias in population genetic analyses: why it is important, and how to correct it. BioEssays 35:780–786.  https://doi.org/10.1002/bies.201300014 PubMedPubMedCentralCrossRefGoogle Scholar
  58. Leonard JA, Vilà C, Wayne RK (2005) Legacy lost: genetic variability and population size of extirpated US grey wolves (Canis lupus). Mol Ecol 14:9–17.  https://doi.org/10.1111/j.1365-294X.2004.02389.x PubMedCrossRefGoogle Scholar
  59. Lindblad-Toh K, Wade CM, Mikkelsen TS et al (2005) Genome sequence, comparative analysis and haplotype structure of the domestic dog. Nature Publishing Group 438:803–819.  https://doi.org/10.1038/nature04338 CrossRefGoogle Scholar
  60. Lowry DB, Hoban S, Kelley JL et al (2016) Breaking RAD: An evaluation of the utility of restriction site associated DNA sequencing for genome scans of adaptation. Mol Ecol Resour.  https://doi.org/10.1111/1755-0998.12596 PubMedPubMedCentralCrossRefGoogle Scholar
  61. Mahlstein I, Knutti R (2012) September Arctic sea ice predicted to disappear near 2 °C global warming above present. J Geophys Res.  https://doi.org/10.1029/2011JD016709 CrossRefGoogle Scholar
  62. Malomane DK, Reimer C, Weigend S et al (2018) Efficiency of different strategies to mitigate ascertainment bias when using SNP panels in diversity studies. BMC Genomics 19:22.  https://doi.org/10.1186/s12864-017-4416-9 PubMedPubMedCentralCrossRefGoogle Scholar
  63. Marguerat S, Bähler J (2009) RNA-seq: from technology to biology. Cell Mol Life Sci 67:569–579.  https://doi.org/10.1007/s00018-009-0180-6 PubMedPubMedCentralCrossRefGoogle Scholar
  64. McKinney GJ, Larson WA, Seeb LW, Seeb JE (2017) RADseq provides unprecedented insights into molecular ecology and evolutionary genetics: comment on Breaking RAD by Lowry et al. (2016). Mol Ecol Resour 17:356–361.  https://doi.org/10.1111/1755-0998.12649 PubMedCrossRefGoogle Scholar
  65. McLaren W, Pritchard B, Rios D et al (2010) Deriving the consequences of genomic variants with the ensembl API and SNP effect predictor. Bioinformatics 26:2069–2070.  https://doi.org/10.1093/bioinformatics/btq330 PubMedPubMedCentralCrossRefGoogle Scholar
  66. McMahon BJ, Teeling EC, Höglund J (2014) How and why should we implement genomics into conservation? Evol Appl 7:999–1007.  https://doi.org/10.1111/eva.12193 PubMedPubMedCentralCrossRefGoogle Scholar
  67. Mech LD (1970) The Wolf. American Museum of Natural History Natural History Press, StroudGoogle Scholar
  68. Mech LD (2004) Is climate change affecting wolf populations in the high arctic? Clim Change 67:87–93.  https://doi.org/10.1007/s10584-004-7093-z CrossRefGoogle Scholar
  69. Mech L (2005) Decline and recovery of a High Arctic wolf-prey system. 58(3):305–307Google Scholar
  70. Merrill SB, Mech LD (2000) Details of Extensive Movements by Minnesota Wolves (Canis lupus)Google Scholar
  71. Moreno JG, Matocq MD, Roy MS et al (1996) Relationships and genetic purity of the endangered Mexican wolf based on analysis of microsatellite loci. Conserv Biol 10:376–389.  https://doi.org/10.1046/j.1523-1739.1996.10020376.x CrossRefGoogle Scholar
  72. Muñoz Fuentes V, Darimont CT, Wayne RK et al (2009) Ecological factors drive differentiation in wolves from British Columbia. J Biogeogr 36:1516–1531.  https://doi.org/10.1111/j.1365-2699.2008.02067.x CrossRefGoogle Scholar
  73. Musiani M, Leonard JA, Cluff D et al (2007) Differentiation of tundra/taiga and boreal coniferous forest wolves: genetics, coat colour and association with migratory caribou. Mol Ecol 16:4149–4170.  https://doi.org/10.1111/j.1365-294X.2007.03458.x PubMedCrossRefGoogle Scholar
  74. Newsome TM, Boitani L, Chapron G et al (2016) Food habits of the world’s grey wolves. Mamm Rev 46:255–269.  https://doi.org/10.1111/mam.12067 CrossRefGoogle Scholar
  75. Nielsen R, Signorovitch J (2003) Correcting for ascertainment biases when analyzing SNP data: applications to the estimation of linkage disequilibrium. Theor Popul Biol 63:245–255.  https://doi.org/10.1016/S0040-5809(03)00005-4 PubMedCrossRefGoogle Scholar
  76. Notaro M, Mauss A, Williams JW (2012) Projected vegetation changes for the American Southwest: combined dynamic modeling and bioclimatic-envelope approach. Ecol Appl 22:1365–1388.  https://doi.org/10.1890/11-1269.1 PubMedCrossRefGoogle Scholar
  77. Nowak RM (1995) Another look at wolf taxonomy. In: Carbyn LN, Fritts SH, Seip DR (eds) Ecology and conservation of wolves in a changing. Occasional Publication No. 35, Edmonton, Alberta, pp 375–397Google Scholar
  78. Ouborg NJ, Pertoldi C, Loeschcke V et al (2010) Conservation genetics in transition to conservation genomics. Trends Genet 26:177–187.  https://doi.org/10.1016/j.tig.2010.01.001 PubMedCrossRefGoogle Scholar
  79. Oyler-McCance SJ, Oh KP, Langin KM, Aldridge CL (2016) A field ornithologist’s guide to genomics: practical considerations for ecology and conservation. The Auk 133:626–648.  https://doi.org/10.1642/AUK-16-49.1 CrossRefGoogle Scholar
  80. Parsons D (1996) Case study: the Mexican wolf. N. M. J ScienceGoogle Scholar
  81. Pavlidis P, Živkovic D, Stamatakis A, Alachiotis N (2013) SweeD: likelihood-based detection of selective sweeps in thousands of genomes. Mol Biol Evol 30:2224–2234.  https://doi.org/10.1093/molbev/mst112 PubMedPubMedCentralCrossRefGoogle Scholar
  82. Peters R, Ripple WJ, Wolf C et al (2018) Nature divided, scientists united: US–Mexico border wall threatens biodiversity and binational conservation. BioSci 24:171–176.  https://doi.org/10.1093/biosci/biy063 CrossRefGoogle Scholar
  83. Pilot M, Jedrzejewski W, Branicki W et al (2006) Ecological factors influence population genetic structure of European grey wolves. Mol Ecol 15:4533–4553.  https://doi.org/10.1111/j.1365-294X.2006.03110.x PubMedCrossRefGoogle Scholar
  84. Pilot M, Branicki W, Jędrzejewski W et al (2010) Phylogeographic history of grey wolves in Europe. BMC Evol Biol 10:104.  https://doi.org/10.1186/1471-2148-10-104 PubMedPubMedCentralCrossRefGoogle Scholar
  85. Pilot M, Greco C, vonHoldt BM et al (2014) Genome-wide signatures of population bottlenecks and diversifying selection in European wolves. Heredity 112:428–442.  https://doi.org/10.1038/hdy.2013.122 PubMedCrossRefGoogle Scholar
  86. Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecolo Modell 190:231–259CrossRefGoogle Scholar
  87. Räikkönen J, Vucetich JA, Peterson RO, Nelson MP (2009) Congenital bone deformities and the inbred wolves (Canis lupus) of Isle Royale. Biol Cons 142:1025–1031.  https://doi.org/10.1016/j.biocon.2009.01.014 CrossRefGoogle Scholar
  88. Razgour O, Taggart JB, Manel S et al (2017) An integrated framework to identify wildlife populations under threat from climate change. Mol Ecol Resour 91:2437.  https://doi.org/10.1111/1755-0998.12694 CrossRefGoogle Scholar
  89. Reed JE, Ballard WB, Gipson PS et al (2006) Diets of Free-Ranging Mexican Gray Wolves in Arizona and New Mexico. Wildl Soc Bull 34:1127–1133.  https://doi.org/10.2193/0091-7648(2006)34%5B1127:DOFMGW%5D2.0.CO;2 CrossRefGoogle Scholar
  90. Reimand J, Kull M, Peterson H et al (2007) g:Profiler—a web-based toolset for functional profiling of gene lists from large-scale experiments. Nucleic Acids Res 35:W193–W200.  https://doi.org/10.1093/nar/gkm226 PubMedPubMedCentralCrossRefGoogle Scholar
  91. Reimand J, Arak T, Vilo J (2011) g:Profiler—a web server for functional interpretation of gene lists (2011 update). Nucleic Acids Res 39:W307–W315.  https://doi.org/10.1093/nar/gkr378 PubMedPubMedCentralCrossRefGoogle Scholar
  92. Robinson JA, Vecchyo DO-D, Fan Z et al (2016) genomic flatlining in the endangered island fox. Curr Biol 1–25.  https://doi.org/10.1016/j.cub.2016.02.062
  93. Rosenblum EB, Novembre J (2007) Ascertainment bias in spatially structured populations: a case study in the eastern fence lizard. J Hered 98:331–336.  https://doi.org/10.1093/jhered/esm031 PubMedCrossRefGoogle Scholar
  94. Roy MS, Geffen E, Smith D et al (1994) Patterns of differentiation and hybridization in North American wolflike canids, revealed by analysis of microsatellite loci. Mol Biol Evol 11:553–570.  https://doi.org/10.1093/oxfordjournals.molbev.a040137 PubMedCrossRefGoogle Scholar
  95. Schweizer RM, Robinson JA, Harrigan RJ et al (2016a) Targeted capture and resequencing of 1040 genes reveal environmentally driven functional variation in grey wolves. Mol Ecol 25:357–379.  https://doi.org/10.1111/mec.13467 PubMedCrossRefGoogle Scholar
  96. Schweizer RM, vonHoldt BM, Harrigan RJ et al (2016b) Genetic subdivision and candidate genes under selection in North American grey wolves. Mol Ecol 25:380–402.  https://doi.org/10.1111/mec.13364 PubMedCrossRefGoogle Scholar
  97. Shafer ABA, Wolf JBW, Alves PC et al (2015) Genomics and the challenging translation into conservation practice. Trends Ecol Evol 30:78–87.  https://doi.org/10.1016/j.tree.2014.11.009 PubMedCrossRefGoogle Scholar
  98. Shaw H (1983) The Wolf in the Southwest: the making of an endangered species. University of Arizona PressGoogle Scholar
  99. Slater GJ, Dumont ER, Van Valkenburgh B (2009) Implications of predatory specialization for cranial form and function in canids. J Zool 278:181–188.  https://doi.org/10.1111/j.1469-7998.2009.00567.x CrossRefGoogle Scholar
  100. Smith DW, Peterson RO, Houston D (2003) Yellowstone after Wolves. Bioscience 53:330–340CrossRefGoogle Scholar
  101. Sneed PG (2001) The feasibility of gray wolf reintroduction to the Grand Canyon ecoregionGoogle Scholar
  102. Steiner CC, Putnam AS, Hoeck PEA, Ryder OA (2013) Conservation genomics of threatened animal Species. Ann Rev Anim Biosci 1:261–281.  https://doi.org/10.1146/annurev-animal-031412-103636 CrossRefGoogle Scholar
  103. Storey KB (2015) Regulation of hypometabolism: insights into epigenetic controls. J Exp Biol 218:150–159.  https://doi.org/10.1242/jeb.106369 PubMedCrossRefGoogle Scholar
  104. Stronen AV, Navid EL, Quinn MS et al (2014) Population genetic structure of gray wolves (Canis lupus) in a marine archipelago suggests island-mainland differentiation consistent with dietary niche. BMC Ecol 14:11.  https://doi.org/10.1186/1472-6785-14-11 PubMedPubMedCentralCrossRefGoogle Scholar
  105. U.S. Fish and Wildlife Service Endangered and threatened wildlife and plants; removing the gray wolf (Canis lupus) from the list of endangered and threatened wild- life and maintaining protections for the Mexican wolf (Canis lupus baileyi) by listing it as endangeredGoogle Scholar
  106. Vilà C, Amorim IR, Leonard JA et al (1999) Mitochondrial DNA phylogeography and population history of the grey wolf (Canis lupus). Mol Ecol 8:2089–2103.  https://doi.org/10.1046/j.1365-294x.1999.00825.x PubMedCrossRefGoogle Scholar
  107. Verts BJ, Carraway LN (1998) Land Mammals of Oregon. Univ of California PressGoogle Scholar
  108. vonHoldt BM, Stahler DR, Bangs EE et al (2010) A novel assessment of population structure and gene flow in grey wolf populations of the Northern Rocky Mountains of the United States. Mol Ecol 19:4412–4427.  https://doi.org/10.1111/j.1365-294X.2010.04769.x PubMedCrossRefGoogle Scholar
  109. vonHoldt BM, Pollinger JP, Earl DA et al (2011) A genome-wide perspective on the evolutionary history of enigmatic wolf-like canids. Genome Res 21:1294–1305.  https://doi.org/10.1101/gr.116301.110 PubMedPubMedCentralCrossRefGoogle Scholar
  110. vonHoldt BM, Cahill JA, Fan Z et al (2016) Whole-genome sequence analysis shows that two endemic species of North American wolf are admixtures of the coyote and gray wolf. Science Advances 2:e1501714–e1501714.  https://doi.org/10.1126/sciadv.1501714 PubMedPubMedCentralCrossRefGoogle Scholar
  111. vonHoldt BM, Brzeski KE, Wilcove DS, Rutledge LY (2017) Redefining the role of admixture and genomics in species conservation. Conserv Lett 16:613.  https://doi.org/10.1111/conl.12371 CrossRefGoogle Scholar
  112. Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10:57–63.  https://doi.org/10.1038/nrg2484 PubMedPubMedCentralCrossRefGoogle Scholar
  113. Wayne RK, Shaffer HB (2016) Hybridization and endangered species protection in the molecular era. Mol Ecol 25:2680–2689.  https://doi.org/10.1111/mec.13642 PubMedCrossRefGoogle Scholar
  114. Wayne RK, Lehman N, Allard MW, Honeycutt RL (1992) Mitochondrial DNA variability of the gray wolf: genetic consequences of population decline and habitat fragmentation. Conserv Biol 6:559–569.  https://doi.org/10.1046/j.1523-1739.1992.06040559.x CrossRefGoogle Scholar
  115. Weckworth BV, Talbot S, Sage GK et al (2005) A signal for independent coastal and continental histories among North American wolves. Mol Ecol 14:917–931.  https://doi.org/10.1111/j.1365-294X.2005.02461.x PubMedCrossRefGoogle Scholar
  116. Weckworth BV, Dawson NG, Talbot SL, Cook JA (2015) Genetic distinctiveness of Alexander Archipelago Wolves (Canis lupus ligoni). J Hered 106:412–414.  https://doi.org/10.1093/jhered/esv026 PubMedCrossRefGoogle Scholar
  117. Wilhelm BT, Landry J-R (2009) RNA-Seq—quantitative measurement of expression through massively parallel RNA-sequencing. Methods 48:249–257.  https://doi.org/10.1016/j.ymeth.2009.03.016 PubMedCrossRefGoogle Scholar
  118. Wu C-W, Biggar KK, Storey KB (2013) Dehydration mediated microRNA response in the African clawed frog Xenopus laevis. Gene 529:269–275.  https://doi.org/10.1016/j.gene.2013.07.064 PubMedCrossRefGoogle Scholar
  119. Young S, Goldman EA (1944) The Wolves of North America. 2 vols. American Wildlife Institute, WashingtonGoogle Scholar
  120. Zaragosi L-E, Wdziekonski B, Brigand KL et al (2011) Small RNA sequencing reveals miR-642a-3p as a novel adipocyte-specific microRNA and miR-30 as a key regulator of human adipogenesis. Genome Biol 12:R64.  https://doi.org/10.1186/gb-2011-12-7-r64 PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of Biological Sciences, Institute of Bioinformatics and Evolutionary StudiesUniversity of IdahoMoscowUSA
  2. 2.Division of Biological SciencesUniversity of MontanaMissoulaUSA
  3. 3.Department of Ecology and Evolutionary BiologyUniversity of California, Los AngelesLos AngelesUSA

Personalised recommendations