Advertisement

Conservation Genetics

, Volume 19, Issue 6, pp 1425–1437 | Cite as

The contrasting genetic patterns of two sympatric flying fox species from the Comoros and the implications for conservation

  • Mohamed Thani IbouroiEmail author
  • Ali Cheha
  • Veronique Arnal
  • Erwan Lagadec
  • Pablo Tortosa
  • Gildas Le Minter
  • Said Ali Ousseni Dhurham
  • Claudine Montgelard
  • Aurélien Besnard
Research Article

Abstract

Pteropus livingstonii and Pteropus seychellensis comorensis are endemic fruit bat species that are among the most threatened animals in the Comoros archipelago. Both species are pollinators and seed dispersers of native and cultivated plants and are thus of crucial importance for the regeneration of natural forests as well as for cultivated plantations. However, these species are subject to strong anthropogenic pressures and face one of the highest rates of natural habitat loss reported worldwide. Yet little is known about the population genetic structure of these two species, making it difficult to define relevant conservation strategies. In this study, we investigated for the two flying fox species (1) the level of genetic diversity within islands, as well as across the archipelago and (2) the genetic structure between the two islands (Anjouan and Mohéli) for P. livingstonii and between the four islands of the archipelago (Anjouan, Mohéli, Grande Comore and Mayotte) for P. s. comorensis using mitochondrial and microsatellite markers. The results revealed contrasting patterns of genetic structure, with P. s. comorensis showing low genetic structure between islands, whereas P. livingstonii exhibited high levels of inter-island genetic differentiation. Overall, the genetic analyses showed low genetic diversity for both species. These contrasting genetic patterns may be the result of different dispersal patterns and the populations’ evolutionary histories. Our findings lead us to suggest that in terms of conservation strategy, the two populations of P. livingstonii (on Anjouan and Mohéli islands) should be considered as two separate management units. We recommend focusing conservation efforts on the Anjouan population, which is the largest, exhibits the highest genetic diversity, and suffers the greatest anthropogenic pressure. As for P. s. comorensis, its four populations could be considered as a single unit for conservation management purposes. For this species, we recommend protecting roosting trees to reduce population disturbance.

Keywords

Comoros islands Colonization history Dispersal Conservation management units Flying foxes Population genetics 

Notes

Acknowledgements

We would like to thank the Comoros Department of the Environment and Forests, the University of Comoros, for granting permission on Anjouan, Mohéli and Grande Comore to carry out our field work and export samples (N° 002/KM/15/DNEF). For the field work on Mayotte, permits were issued by the Department of the Environment, Land Use and Housing (DEAL). We are grateful to the Mayotte National Forest Agency and Departmental Council and the non-profit organization Naturalistes Environnement et Patrimoine de Mayotte for allowing animal capture on conservation sites. The field work was funded through a Research Support Grant from the Rufford Foundation (Grant Number 19010-1 to Ali Cheha) and by the French National Center of Scientific Research (CNRS) Institute of Ecology and the Environment (ECOSAN BatMan). The laboratory analyses were partly funded by the Islamic Development Bank (IDB). The data used in this study was obtained using the technical equipment at the Degraded DNA and Genotyping-sequencing platforms at the LabEx CeMEB laboratory (Montpellier, France). We would also like to thank Eric Petit for his guidance during the genetic analysis. Finally, we are grateful to the two anonymous reviewers of this manuscript; they provided extensive and critical corrections and comments for the improvement.

Supplementary material

10592_2018_1111_MOESM1_ESM.docx (1.2 mb)
Supplementary material 1 (DOCX 1237 KB)

References

  1. Akaike H (1973) Information theory and an extension of the maximum likelihood principle. In: Proceeding of the 2nd international symposium on information theory, 267–281, BudapestGoogle Scholar
  2. Bandelt HJ, Forster P, Rohl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37–48.  https://doi.org/10.1093/oxfordjournals.molbev.a026036 CrossRefPubMedGoogle Scholar
  3. Belkhir K, Borsa P, Chikhi L, Raufaste N, Bonhomme F (2004) Genetix 4.05, logiciel sous Windows pour la génétique des populations. Laboratoire Génome, Populations, Interactions, CNRS UMR 5171. Université de Montpellier II, MontpellierGoogle Scholar
  4. Bessa J, Sousa C, Hockings KJ (2015) Feeding ecology of chimpanzees (Pan troglodytes verus) inhabiting a forest-mangrove-savanna-agricultural matrix at Caiquene-Cadique, Cantanhez National Park, Guinea-Bissau. Am J Primatol 77:651–665.  https://doi.org/10.1002/ajp.22388 CrossRefPubMedGoogle Scholar
  5. Bonte D, Van Dyck H, Bullock JM et al (2012) Costs of dispersal. Biol Rev 87:290–312.  https://doi.org/10.1111/j.1469-185X.2011.00201.x CrossRefPubMedGoogle Scholar
  6. Breed AC, Field HE, Smith CS et al (2010) Bats without borders: long-distance movements and implications for disease risk management. Ecohealth 7:204–212CrossRefGoogle Scholar
  7. Brinkman TJ, Schwartz MK, Person DK, Pilgrim KL, Hundertmark KJ (2009) Effects of time and rainfall on PCR success using DNA extracted from deer fecal pellets. Conserv Genet 11:1547–1552.  https://doi.org/10.1007/s10592-009-9928-7 CrossRefGoogle Scholar
  8. Brooks TM, Pimm SL, Collart NJ (1997) Deforestation predicts the number of threatened birds in insular southeast Asia. Conserv Biol 11:382–394.  https://doi.org/10.1046/j.1523-1739.1997.95493.x CrossRefGoogle Scholar
  9. Brown VA, Brooke A, Fordyce JA, McCracken GF (2011) Genetic analysis of populations of the threatened bat Pteropus mariannus. Conserv Genet 12:933–941.  https://doi.org/10.1007/s10592-011-0196-y CrossRefGoogle Scholar
  10. Chan LM, Goodman SM, Nowak MD et al (2011) Increased population sampling confirms low genetic divergence among Pteropus (Chiroptera: Pteropodidae) fruit bats of Madagascar and other western Indian Ocean islands. PLoS Curr 21:1–17.  https://doi.org/10.1371/currents.RRN1226 CrossRefGoogle Scholar
  11. Cheke AS (2011) Was the flying-fox Pteropus comorensis on mafia island (tanzania) introduced by humans? J East African Nat Hist 100:59–68CrossRefGoogle Scholar
  12. Cornuet JM, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144:2001–2014PubMedPubMedCentralGoogle Scholar
  13. Donlan CJ, Wilcox C (2008) Diversity, invasive species and extinctions in insular ecosystems. J Appl Ecol 45:1321–1329.  https://doi.org/10.1111/j.1365-2664.2007.0 CrossRefGoogle Scholar
  14. Epstein JH, Olival KJ, Pulliam JRC et al (2009) Pteropus vampyrus, a hunted migratory species with a multinational home-range and a need for regional management. J Appl Ecol 46:991–1002CrossRefGoogle Scholar
  15. FAO (2010) Évaluation des ressources forestières mondiales 2010. Rapport national: Comores. Report #FRA2010/044. Food and Agriculture Organization of the United Nations, RomeGoogle Scholar
  16. Foster JT, Walker FM, Rannals BD, Sanchez DE (2018) Population genetics of an island invasion by Japanese Bush-Warblers in Hawaii, USA. Auk 135:171–180.  https://doi.org/10.1642/AUK-17-120.1 CrossRefGoogle Scholar
  17. Fox S, Waycott M, Blair D, Luly J (2012) Regional genetic differentiation in the spectacled flying fox (Pteropus conspicillatus Gould). Peopled Landscapes Archaeol Biogeogr Approaches to Landscapes, 459–472Google Scholar
  18. Francis RM (2016) Pophelper: an R package and web app to analyse and visualize population structure. Mol Ecol Resour 17:27–32.  https://doi.org/10.1111/1755-0998.12509 CrossRefPubMedGoogle Scholar
  19. Gaubert P, Patel R, Veron G et al (2016) Phylogeography of the small Indian civet and origin of introductions to western Indian Ocean islands. J Hered.  https://doi.org/10.1093/jhered/esw085
  20. Goodman SM, Chan LM, Nowak MD, Yoder AD (2010) Phylogeny and biogeography of western Indian Ocean Rousettus (Chiroptera: Pteropodidae). J Mammal 91:1–16.  https://doi.org/10.1644/09-MAMM-A-283.1.Key CrossRefGoogle Scholar
  21. Grattarola F, González S, Cosse M (2015) A novel primer set for mammal species identification from feces samples. Conserv Genet Resour 7:57–59.  https://doi.org/10.1007/s12686-014-0359-5 CrossRefGoogle Scholar
  22. Haag CR, Riek M, Hottinger JW et al (2006) Founder event as determinants of within-island and among-island genetic structure of Daphnia metapopulations. Heredity 96:150–158.  https://doi.org/10.1038/sj.hdy.6800774 CrossRefPubMedGoogle Scholar
  23. Hasegawa M, Kishino H, Yano T (1985) Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol 22(2):160–174CrossRefGoogle Scholar
  24. Ibouroi MT, Cheha A, Astruc G et al (2018) A habitat suitability analysis at multi-spatial scale of two sympatric flying fox species reveals the urgent need for conservation action. Biodivers Conserv 27:2395–2423.  https://doi.org/10.1007/s10531-018-1544-8 CrossRefGoogle Scholar
  25. Ingleby S, Colgan D (2003) Electrophoretic studies of the systematic and biogeographic relationships of the fijian bat genera Pteropus, Pteralopex, Chaerephon and Notopteris. Aust Mammal 25:13–29.  https://doi.org/10.1071/AM03013 CrossRefGoogle Scholar
  26. Irwin DM, Kocher TD, Wilson AC (1991) Evolution of the cytochrome b gene of mammals. J Mol Evol 32:128–144CrossRefGoogle Scholar
  27. IUCN 2018. The IUCN Red List of Threatened Species. Version 2018-1. http://www.iucnredlist.org. Downloaded on 08 September 2018
  28. Jackson ND, Fahrig L (2016) Habitat amount, not habitat configuration, best predicts population genetic structure in fragmented landscapes. Landscape Ecol 31:951–968.  https://doi.org/10.1007/s10980-015-0313-2 CrossRefGoogle Scholar
  29. Kalinowski ST (2005) HP-RARE 1.0: a computer program for performing rarefaction on measures of allelic richness. Mol Ecol Notes 5:187–189.  https://doi.org/10.1111/j.1471-8286.2004.00845.x CrossRefGoogle Scholar
  30. Kimura M, Crow JF (1964) The number of alleles that can be maintained in a finite population. Genetics 49(4):725–738PubMedPubMedCentralGoogle Scholar
  31. Kimura M, Ohta T (1978) Stepwise mutation model and distribution of allelic frequencies in a finite population. Proc Natl Acad Sci USA 75(6):2868–2872CrossRefGoogle Scholar
  32. Kleyheeg E, van Leeuwen CHA, Morison MA et al (2015) Bird-mediated seed dispersal: reduced digestive efficiency in active birds modulates the dispersal capacity of plant seeds. Oikos 124:899–907.  https://doi.org/10.1111/oik.01894 CrossRefGoogle Scholar
  33. Lagadec E, Gomard Y, Le Minter G et al (2016) Identification of Tenrec ecaudatus, a wild mammal introduced to Mayotte island, as a reservoir of the newly identified human pathogenic Leptospira mayottensis. PLoS Negl Trop Dis 10:1–12.  https://doi.org/10.1371/journal.pntd.0004933 CrossRefGoogle Scholar
  34. Larsen PA, Hayes CE, Wilkins MA et al (2014) Population genetics of the Mauritian Flying Fox, Pteropus niger. Acta Chiropterologica 16:293–300.  https://doi.org/10.3161/150811014X687251 CrossRefGoogle Scholar
  35. Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452.  https://doi.org/10.1093/bioinformatics/btp187 CrossRefGoogle Scholar
  36. Maltagliati F (2002) Genetic monitoring of brackish-water populations: the Mediterranean toothcarp Aphanius fasciatus (Cyprinodontidae) as a model. Mar Ecol Prog Ser 235:257–262.  https://doi.org/10.3354/meps235257 CrossRefGoogle Scholar
  37. Marucco F, Pletscher DH, Boitani L, Schwartz MK, Pilgrim KL, Lebreton JD (2009) Wolf survival and population trend using non-invasive capture-recapture techniques in the Western Alps. J Appl Ecol 46:1003–1010.  https://doi.org/10.1111/j.1365-2664.2009.01696.x CrossRefGoogle Scholar
  38. Mickleburgh S, Hutson AM, Bergmans W et al (2008) Pteropus seychellensis, Seychelles Flying Fox. IUCN Red List Threat Species 2008:e.T188759A8576164Google Scholar
  39. Mildenstein TL, Stier SC, Nuevo-Diego CE, Mills LS (2005) Habitat selection of endangered and endemic large flying-foxes in Subic Bay, Philippines. Biol Conserv 126:93–102.  https://doi.org/10.1016/j.biocon.2005.05.001 CrossRefGoogle Scholar
  40. O’Brien J (2011) Bats of the Western Indian Ocean Islands. Animals 1:259–290CrossRefGoogle Scholar
  41. O’Brien J, McCracken GF, Say L, Hayden TJ (2007) Rodrigues fruit bats (Pteropus rodricensis, Megachiroptera: Pteropodidae) retain genetic diversity despite population declines and founder events. Conserv Genet 8:1073–1082.  https://doi.org/10.1007/s10592-006-9263-1 CrossRefGoogle Scholar
  42. O’Brien J, Mariani C, Olson L et al (2009) Multiple colonisations of the western Indian Ocean by Pteropus fruit bats (Megachiroptera: Pteropodidae): the furthest islands were colonised first. Mol Phylogenet Evol 51:294–303.  https://doi.org/10.1016/j.ympev.2009.02.010 CrossRefPubMedGoogle Scholar
  43. Oleksy R, Racey PA, Jones G (2015) High-resolution GPS tracking reveals habitat selection and the potential for long-distance seed dispersal by Madagascan flying foxes Pteropus rufus. Glob Ecol Conserv 3:678–692CrossRefGoogle Scholar
  44. Paulay G (1994) Biodiversity on oceanic islands: its origin and extinction. Integr Comp Biol 34:134–144.  https://doi.org/10.1093/icb/34.1.134 CrossRefGoogle Scholar
  45. Peakall R, Smouse PE (2012) GenALEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 28:2537–2539.  https://doi.org/10.1093/bioinformatics/bts460 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Pierson ED, Elmqvist T, Rainey WE, Cox PA (1996) Effects of tropical cyclonic storms on flying fox populations on the south sacific islands of Samoa. Conserv Biol 10(2):438–451CrossRefGoogle Scholar
  47. Piry S, Luikart G, Cornuet JM (1999) Computer note. BOTTLE- NECK: a computer program for detecting recent reductions in the effective size using allele frequency data. J Hered 90:502–503CrossRefGoogle Scholar
  48. Postma E, Van Noordwijk AJ (2005) Gene flow maintains a large genetic difference in clutch size at a small spatial scale. Nature 433:65–68.  https://doi.org/10.1038/nature03083 CrossRefPubMedGoogle Scholar
  49. Pritchard JKK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945.  https://doi.org/10.1111/j.1471-8286.2007.01758.x CrossRefPubMedPubMedCentralGoogle Scholar
  50. R Development Core Team (2016) R: a language and environment for Statistical Computing. R Found Stat Comput Vienna Austria 0, {ISBN} 3-900051-07-0.  https://doi.org/10.1038/sj.hdy.6800737 CrossRefGoogle Scholar
  51. Richter HV, Cumming GS (2008) First application of satellite telemetry to track African straw-coloured fruit bat migration. J Zool 275:172–176CrossRefGoogle Scholar
  52. Rousset F (2008) GENEPOP’007: a complete re-implementation of the GENEPOP software for Windows and Linux. Mol Ecol Resour 8:103–106.  https://doi.org/10.1111/j.1471-8286.2007.01931.x CrossRefPubMedPubMedCentralGoogle Scholar
  53. Russell AL, Brown VA, Utzurrum RCB et al (2016) Comparative Phylogeography of Pteropus samoensis and P. tonganus (Pteropodidae: Chiroptera) in the South Pacific. Acta Chiropterologica 18:325–335.  https://doi.org/10.3161/15081109ACC2016.18.2.002 CrossRefGoogle Scholar
  54. Sewall BJ, Granek EF, Moutui MFE et al (2007) Conservation action plan for Livingstone’s flying fox, A Strategy for an endangered species, a diverse forest, and the Comorian people. Conserv Action Plan Livingstone’s Flying Fox 1–52Google Scholar
  55. Shilton LA, Latch PJ, Mckeown A et al (2008) Landscape-scale redistribution of a highly mobile threatened species, Pteropus conspicillatus (Chiroptera, Pteropodidae), in response to Tropical Cyclone Larry. Austral Ecol 33:549–561CrossRefGoogle Scholar
  56. Soule ME, Bolger DT, Alberts AC et al (1988) Reconstructed dynamics of rapid extinctions of chaparral-requiring birds in urban habitat islands. Conserv Biol 2:75–92CrossRefGoogle Scholar
  57. Taberlet P, Griffin S, Goossens B et al (1996) Reliable genotyping of samples with very low DNA quantities using PCR. Nucleic Acids Res 24:3189–3194.  https://doi.org/10.1093/nar/24.16.3189 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Tamura K, Stecher G, Peterson D et al (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729.  https://doi.org/10.1093/molbev/mst197 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Tidemann CR, Nelson JE (2004) Long-distance movements of the grey-headed flying fox (Pteropus poliocephalus). J Zool 263:141–146CrossRefGoogle Scholar
  60. Trewhella WJ, Rodriguez-Clark KM, Davies JG et al (2001) Sypatric fruit bat species(Chiroptera: Pteropodidae) in the Comoro Islands (Western Indian Ocean): Diurnality, feeding interactions and their conservation implications. Acta Chiropterologica 3:135–147Google Scholar
  61. Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538.  https://doi.org/10.1111/j.1471-8286.2004.00684.x CrossRefGoogle Scholar
  62. Waits L, Taberlet P, Luikart G (2001) Estimating the probability of identity among genotypesin natural populations: cautions and guidelines. Mol Ecol 10:249–256CrossRefGoogle Scholar
  63. Williams KE, Huyvaert KP, Piaggio AJ (2017) Clearing muddied waters: capture of environmental DNA from turbid waters. PLoS ONE 12:1–17.  https://doi.org/10.1371/journal.pone.0179282 CrossRefGoogle Scholar
  64. Wilson GA, Rannala B (2003) Bayesian inference of recent migration rates using multilocus genotypes. Genetics 163(3):1177–1191PubMedPubMedCentralGoogle Scholar
  65. Woods JG, Paetkau D, Lewis D et al (1999) Genetic tagging of free-ranging black and brown bears. Wildl Soc Bull 27:616–627.  https://doi.org/10.2307/3784082 CrossRefGoogle Scholar
  66. Yoder JM, Marschall EA, Swanson DA (2004) The cost of dispersal: predation as a function of movement and site familiarity in ruffed grouse. Behav Ecol 15:469–476.  https://doi.org/10.1093/beheco/arh037 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Mohamed Thani Ibouroi
    • 1
    • 2
    • 3
    Email author
  • Ali Cheha
    • 3
  • Veronique Arnal
    • 1
  • Erwan Lagadec
    • 4
  • Pablo Tortosa
    • 4
  • Gildas Le Minter
    • 4
  • Said Ali Ousseni Dhurham
    • 3
  • Claudine Montgelard
    • 1
  • Aurélien Besnard
    • 1
  1. 1.EPHE, PSL Research University, CNRS, UM, SupAgro, IRD, INRA, UMR 5175 CEFEMontpellierFrance
  2. 2.Institut des Sciences et Industrie du Vivant et de l’environnementAgroParisTechParisFrance
  3. 3.Groupe d’Intervention pour le Développement Durable (GIDD) MoroniMoroniComoros
  4. 4.UMR PIMIT (Processus Infectieux en Milieu Insulaire Tropical)Université de La RéunionSte ClotildeFrance

Personalised recommendations