Advertisement

Conservation Genetics

, Volume 19, Issue 6, pp 1411–1424 | Cite as

Combining phylogeography and landscape genetics to infer the evolutionary history of a short-range Mediterranean relict, Salamandra salamandra longirostris

  • B. Antunes
  • A. Lourenço
  • G. Caeiro-Dias
  • M. Dinis
  • H. Gonçalves
  • I. Martínez-Solano
  • P. Tarroso
  • G. Velo-AntónEmail author
Research Article

Abstract

Examining historical and contemporary processes underlying current patterns of genetic variation is key to reconstruct the evolutionary history of species and implement conservation measures promoting their long-term persistence. Combining phylogeographic and landscape genetic approaches can provide valuable insights, especially in regions harboring high levels of biodiversity that are currently threatened by climate and land cover changes, like southern Iberia. We used genetic (mtDNA and microsatellites) and spatial data (climate and land cover) to infer the evolutionary history and contemporary genetic connectivity in a short-range endemic salamander subspecies, Salamandra salamandra longirostris, using a combination of ecological niche modelling, phylogeographic, and landscape genetic analyses. Ecological-based analyses support a role of the Guadalquivir River Basin as a major vicariant agent in this taxon. The lower genetic diversity and greater differentiation of peripheral populations, together with analyses of climatically stable areas throughout time, suggest the persistence of a population in the central part of the current range since the Last Inter Glacial [LIG; ~ 120,000–140,000 years BP], and a micro refugium in the eastern end of the range. Habitat heterogeneity plays a major role in shaping patterns of genetic differentiation in S. s. longirostris, with forests representing key areas for its long-term persistence under scenarios of environmental change. Our study stresses the importance of maintaining population genetic connectivity in low-dispersal organisms under rapidly changing environments, and will inform management plans for the long-term survival of this evolutionarily distinct Mediterranean endemic.

Keywords

Amphibians Climate change Connectivity Integrative studies Land cover 

Notes

Acknowledgements

We thank David Buckley, David Donaire, Francisco Jiménez Cazalla, Jesús Díaz-Rodríguez, Luis García-Cardenete and Saúl Yubero for providing samples and help with field work. S. Lopes helped with genotyping. Fieldwork for obtaining tissue samples was done with the corresponding permits from the regional administrations This work was funded by FEDER funds through the Operational Programme for Competitiveness Factors—COMPETE—and by National Funds through FCT—Foundation for Science and Technology—under the PTDC/BIA-EVF/3036/2012, PTDC/BIA-BEC/099915/2008, POCI-01-0145-FEDER-006821 and FCOMP- 01-0124-FEDER-028325. GVA, HG, GCD, AL and PT are supported by FCT (IF/01425/2014, SFRH/BPD/102966/2014, SFRH/BD/89750/2012, PD/BD/106060/2015, SFRH/BPD/93473/2013), respectively.

Supplementary material

10592_2018_1110_MOESM1_ESM.doc (30 kb)
Supplementary material 1 (DOC 30 KB)
10592_2018_1110_MOESM2_ESM.doc (253 kb)
Supplementary material 2 (DOC 253 KB)
10592_2018_1110_MOESM3_ESM.doc (1.6 mb)
Supplementary material 3 (DOC 1595 KB)

References

  1. Alcobendas M, Castanet J (2000) Bone growth plasticity among populations of Salamandra salamandra: interactions between internal and external factors. Herpetologica 56:14–26Google Scholar
  2. Allendorf FW, Luikart GH, Aitken SN (2013) Conservation and the genetics of populations, 2nd edn. Wiley, ChichesterGoogle Scholar
  3. Álvarez D, Lourenço A, Oro D, Velo-Antón G (2015) Assessment of census (N) and effective population size (Ne) reveals consistency of Ne single-sample estimators and a high Ne/N ratio in an urban and isolated population of fire salamanders. Conserv Genet Resour 7:705–712Google Scholar
  4. Baguette M, Blanchet S, Legrand D, Stevens VM, Turlure C (2013) Individual dispersal, landscape connectivity and ecological networks. Biol Rev 88:310–326PubMedGoogle Scholar
  5. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B 57:289–300Google Scholar
  6. Beukema W, Nicieza AG, Lourenço A, Velo-Antón G (2016) Colour polymorphism in Salamandra salamandra (Amphibia: Urodela), revealed by a lack of genetic and environmental differentiation between distinct phenotypes. J Zool Syst Evol Res 54:127–136Google Scholar
  7. Carvalho SB, Brito JC, Crespo EG, Watts ME, Possingham HP (2011) Conservation planning under climate change: toward accounting for uncertainty in predicted species distributions to increase confidence in conservation investments in space and time. Biol Conserv 144:2020–2030Google Scholar
  8. Carvalho SB, Velo-Antón G, Tarroso P, Portela AP, Barata M, Carranza S, Mortiz C, Possingham HP (2017) Spatial conservation prioritization of biodiversity spanning the evolutionary continuum. Nat Ecol Evol 1:0151Google Scholar
  9. Chybicki IJ, Burczyk J (2009) Simultaneous estimation of null alleles and inbreeding coefficients. J Hered 100:106–113PubMedGoogle Scholar
  10. Cushman SA (2006) Effects of habitat loss and fragmentation on amphibians: a review and prospectus. Biol Conserv 128:231–240Google Scholar
  11. Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9:772–772PubMedPubMedCentralGoogle Scholar
  12. Dias G, Beltrán JF, Tejedo M, Benítez M, González-Miras E, Ferrand N, Gonçalves H (2015) Limited gene flow and high genetic diversity in the threatened Betic midwife toad (Alytes dickhilleni): evolutionary and conservation implications. Conserv Genet 16:459–476Google Scholar
  13. Díaz-Rodríguez J, Gonçalves H, Sequeira F, Sousa-Neves T, Tejedo M, Ferrand N, Martínez-Solano I (2015) Molecular evidence for cryptic candidate species in Iberian Pelodytes (Anura, Pelodytidae). Mol Phylogenet Evol 83:224–241PubMedGoogle Scholar
  14. Donaire-Barroso D, González de la Vega JP, Barnestein JAM (2009) Aportación sobre los patrones de diseño pigmentario en Salamandra longirostris Joger and Steinfartz, 1994, y nueva nomenclatura taxonómica. Butll Soc Cat Herp 18:10–17Google Scholar
  15. Dormann CF, Elith J, Bacher S, Buchmann C, Carl G, Carré G, Marquéz JRG, Gruber B, Lafourcade B, Leitão PJ, Münkemüller T (2013) Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36:27–46Google Scholar
  16. Drummond AJ, Suchard MA, Xie D, Rambaut A (2012) Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol 29:1969–1973PubMedPubMedCentralGoogle Scholar
  17. Dyer RJ (2014) Gstudio: a Package for the spatial analysis of population genetic marker data. Virginia Commonwealth University, RichmondGoogle Scholar
  18. Dyer RJ, Nason JD (2004) Population graphs: the graph- theoretic shape of genetic structure. Mol Ecol 13:1713–1728PubMedGoogle Scholar
  19. Earl DA, vonHoldt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361Google Scholar
  20. Egea-Serrano A, Oliva-Paterna FJ, Torralva M (2006) Breeding habitat selection of Salamandra salamandra (Linnaeus, 1758) in the most arid zone of its European distribution range: application to conservation management. Hydrobiologia 560:363–371Google Scholar
  21. Elith J, Kearney M, Phillips S (2010) The art of modelling range-shifting species. Methods Ecol Evol 1:330–342Google Scholar
  22. Escoriza D, Hassine JB (2014) Microclimatic variation in multiple Salamandra algira populations along an altitudinal gradient: phenology and reproductive strategies. Acta Herpetol 9:33–41Google Scholar
  23. ESRI (2012) ArcGIS 10.1. ESRI, RedlandsGoogle Scholar
  24. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620Google Scholar
  25. Excoffier L, Foll M, Petit RJ (2009) Genetic consequences of range expansions. Annu Rev Ecol Evol Syst 40:481–501Google Scholar
  26. Ferreira M, Beja P (2013) Mediterranean amphibians and the loss of temporary ponds: Are there alternative breeding habitats? Biol Conserv 165:179–186Google Scholar
  27. Fourcade Y, Engler JO, Rödder D, Secondi J (2014) Mapping species distributions with MAXENT using a geographically biased sample of presence data: a performance assessment of methods for correcting sampling bias. PLoS ONE 9:e97122PubMedPubMedCentralGoogle Scholar
  28. Francis RM (2017) Pophelper: an R package and web app to analyse and visualize population structure. Mol Ecol Resour 17:27–32PubMedGoogle Scholar
  29. Frankham R (2005) Genetics and extinction. Biol Conserv 126:131–140Google Scholar
  30. Frost DR (2018) Amphibian species of the world. Online resource. http://research.amnh.org/herpetology/amphibia/index.html
  31. García-París M, Alcobendas M, Alberch P (1998) Influence of the Guadalquivir River Basin on mitochondrial DNA evolution of Salamandra salamandra (Caudata: Salamandridae) from southern Spain. Copeia 1998:173–176Google Scholar
  32. García-París M, Alcobendas M, Buckley D, Wake DB (2003) Dispersal of viviparity across contact zones in Iberian populations of fire salamanders (Salamandra) inferred from discordance of genetic and morphological traits. Evolution 57:129–143PubMedGoogle Scholar
  33. Gonçalves H, Martínez-Solano I, Pereira RJ, Carvalho B, García-París M, Ferrand N (2009) High levels of population subdivision in a morphologically conserved Mediterranean toad (Alytes cisternasii) result from recent, multiple refugia: evidence from mtDNA, microsatellites and nuclear genealogies. Mol Ecol 18:5143–5160PubMedGoogle Scholar
  34. Gutiérrez-Rodríguez J, Barbosa AM, Martínez-Solano I (2017a) Present and past climatic effects on the current distribution and genetic diversity of the Iberian Spadefoot toad (Pelobates cultripes): an integrative approach. J Biogeogr 44:245–258Google Scholar
  35. Gutiérrez-Rodríguez J, Goncalves J, Civantos E, Martínez-Solano I (2017b) Comparative landscape genetics of pond-breeding amphibians in Mediterranean temporal wetlands: the positive role of structural heterogeneity in promoting gene flow. Mol Ecol 26:5407–5420PubMedGoogle Scholar
  36. He Q, Edwards DL, Knowles LL (2013) Integrative testing of how environments from the past to the present shape genetic structure across landscapes. Evolution 67:3386–3402PubMedGoogle Scholar
  37. Hendrix R, Schmidt BR, Schaub M, Krause ET, Steinfartz S (2017) Differentiation of movement behavior in an adaptively diverging salamander population. Mol Ecol 26:6400–6413PubMedGoogle Scholar
  38. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978Google Scholar
  39. Joger U, Steinfartz S (1994) Zur subspezifischen Gliederung der siidiberischen Feuersalamander (Salamandra salamandra-Komplex). Abh Ber Nat 17:83–98Google Scholar
  40. Jombart T, Devillard S, Dufour A-B, Pontier D (2008) Revealing cryptic spatial patterns in genetic variability by a new multivariate method. Heredity 101:92–103PubMedGoogle Scholar
  41. Jombart T, Devillard S, Balloux F (2010) Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet 11:94PubMedPubMedCentralGoogle Scholar
  42. Jones OR, Wang J (2010) COLONY: a program for parentage and sibship inference from multilocus genotype data. Mol Ecol Resour 10:551–555PubMedGoogle Scholar
  43. Kalinowski ST (2005) HP-RARE 1.0: a computer program for performing rarefaction on measures of allelic richness. Mol Ecol Resour 5:187–189Google Scholar
  44. Keenan K, McGinnity P, Cross TF, Crozier WW, Prodöhl PA (2013) diveRsity: an R package for the estimation and exploration of population genetics parameters and their associated errors. Methods Ecol Evol 4:782–788Google Scholar
  45. Konowalik A, Najbar A, Babik W, Steinfartz S, Ogielska M (2016) Genetic structure of the fire salamander Salamandra salamandra in the Polish Sudetes. Amphib Reptil 37:405–415Google Scholar
  46. Lee C-R, Mitchell-Olds T (2011) Quantifying effects of environmental and geographical factors on patterns of genetic differentiation. Mol Ecol 20:4631–4642PubMedPubMedCentralGoogle Scholar
  47. Legendre P, Fortin MJ (2010) Comparison of the Mantel test and alternative approaches for detecting complex multivariate relationships in the spatial analysis of genetic data. Mol Ecol Resour 10:831–844PubMedGoogle Scholar
  48. Lourenço A, Álvarez D, Wang IJ, Velo-Antón G (2017) Trapped within the city: integrating demography, time since isolation and population-specific traits to assess the genetic effects of urbanization. Mol Ecol 26:1498–1514PubMedGoogle Scholar
  49. Martínez-Freiría F, Velo-Antón G, Brito JC (2015) Trapped by climate: interglacial refuge and recent population expansion in the endemic Iberian adder Vipera seoanei. Divers Distrib 21:331–344Google Scholar
  50. McRae BH (2006) Isolation by resistance. Evolution 60:1551–1561PubMedGoogle Scholar
  51. McRae BH, Dickson BG, Keitt TH, Shah VB (2008) Using circuit theory to model connectivity in ecology, evolution, and conservation. Ecology 89:2712–2724PubMedGoogle Scholar
  52. Miller MA, Pfeiffer W, Schwartz T (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In: Gateway Computing Environments Workshop (GCE), 2010, pp 1–8Google Scholar
  53. Muñoz-Pajares AJ, García C, Abdelaziz M, Bosch J, Perfectti F, Gómez JM (2017) Drivers of genetic differentiation in a generalist insect-pollinated herb across spatial scales. Mol Ecol 26:1576–1585PubMedGoogle Scholar
  54. Myers N, Mittermeier RA, Mittermeier CG, Da Fonseca GA, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858PubMedGoogle Scholar
  55. Najbar A, Babik W, Najbar B, Ogielska M (2015) Genetic structure and differentiation of the fire salamander Salamandra salamandra at the northern margin of its range in the Carpathians. Amphib Reptil 36:301–311Google Scholar
  56. Noguerales V, García-Navas V, Cordero PJ, Ortego J (2016) The role of environment and core-margin effects on range-wide phenotypic variation in a montane grasshopper. J Evol Biol 29:2129–2142PubMedGoogle Scholar
  57. Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28:2537–2539PubMedPubMedCentralGoogle Scholar
  58. Pereira P, Teixeira J, Velo-Antón G (2018) Allele surfing shaped the genetic structure of the European pond turtle via the colonization and population expansion across the Iberian Peninsula from Africa. J Biogeogr.  https://doi.org/10.1111/jbi.13412 CrossRefGoogle Scholar
  59. Peterman W, Brocato ER, Semlitsch RD, Eggert LS (2016) Reducing bias in population and landscape genetic inferences: the effects of sampling related individuals and multiple life stages. PeerJ 4:e1813.  https://doi.org/10.7717/peerj.1813 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259Google Scholar
  61. Pleguezuelos JM (2004) Atlas y libro rojo de los anfibios y reptiles de España. Organismo Autónomo de Parques Nacionales, MadridGoogle Scholar
  62. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedPubMedCentralGoogle Scholar
  63. Prunier JG, Colyn M, Legendre X, Nimon KF, Flamand MC (2015) Multicollinearity in spatial genetics: separating the wheat from the chaff using commonality analyses. Mol Ecol 24:263–283PubMedGoogle Scholar
  64. Queller DC, Goodnight KF (1989) Estimating relatedness using genetic markers. Evolution 43:258–275PubMedGoogle Scholar
  65. R Development Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  66. Razgour O, Taggart JB, Manel S, Juste J, Ibáñez C, Rebelo H, Alberdi A, Gareth J, Park K (2017) An integrated framework to identify wildlife populations under threat from climate change. Mol Ecol Resour.  https://doi.org/10.1111/1755-0998.12694 CrossRefPubMedGoogle Scholar
  67. Rissler LJ (2016) Union of phylogeography and landscape genetics. ‎Proc Natl Acad Sci USA 113:8079–8086PubMedGoogle Scholar
  68. Romero D, Olivero J, Real R (2013) Comparative assessment of different methods for using land-cover variables for distribution modelling of Salamandra salamandra longirotris. Environ Conserv 40:48–59Google Scholar
  69. Rousset F (2008) genepop’007: a complete re-implementation of the genepop software for Windows and Linux. Mol Ecol Resour 8:103–106PubMedPubMedCentralGoogle Scholar
  70. Sánchez-Montes G, Ariño AH, Vizmanos JL, Wang J, Martínez-Solano I (2017) Effects of sample size and full sibs on genetic diversity characterization: a case study of three syntopic Iberian pond-breeding amphibians. J Hered 108:535–543PubMedGoogle Scholar
  71. Santos X, Rato C, Carranza S, Carretero MA, Pleguezuelos JM (2012) Complex phylogeography in the Southern Smooth Snake (Coronella girondica) supported by mtDNA sequences. J Zool Syst Evol Res 50:210–219Google Scholar
  72. Sexton JP, Hangartner SB, Hoffmann AA (2014) Genetic isolation by environment or distance: which pattern of gene flow is most common? Evolution 68:1–15PubMedGoogle Scholar
  73. Smith MA, Green DM (2005) Dispersal and the metapopulation paradigm in amphibian ecology and conservation: are all amphibian populations metapopulations? Ecography 28:110–128Google Scholar
  74. Steinfartz S, Veith M, Tautz D (2000) Mitochondrial sequence analysis of Salamandra taxa suggests old splits of major lineages and postglacial recolonizations of Central Europe from distinct source populations of Salamandra salamandra. Mol Ecol 9:397–410PubMedGoogle Scholar
  75. Steinfartz S, Kuesters D, Tautz D (2004) Isolation and characterization of polymorphic tetranucleotide microsatellite loci in the Fire salamander Salamandra salamandra (Amphibia: Caudata). Mol Ecol Resour 4:626–628Google Scholar
  76. Stuart SN, Chanson JS, Cox NA, Young BE, Rodrigues AS, Fischman DL, Waller RW (2004) Status and trends of amphibian declines and extinctions worldwide. Science 306:1783–1786PubMedGoogle Scholar
  77. Todd BD, Luhring TM, Rothermel BB, Gibbons JW (2009) Effects of forest removal on amphibian migrations: implications for habitat and landscape connectivity. J Appl Ecol 46:554–561Google Scholar
  78. Van Oosterhout C, Hutchinson WF, Wills DP, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Resour 4:535–538Google Scholar
  79. Velo-Antón G, Buckley D (2015) Salamandra común–Salamandra salamandra (Linnaeus 1758). In: Enciclopedia virtual de los vertebrados españoles. Museo Nacional de Ciencias Naturales (MNCN), CSIC, MadridGoogle Scholar
  80. Velo-Antón G, Godinho R, Harris DJ, Santos X, Martínez-Freiria F, Fahd S, Larbes S, Pleguezuelos JM, Brito JC (2012a) Deep evolutionary lineages in a Western Mediterranean snake (Vipera latastei/monticola group) and high genetic structuring in Southern Iberian populations. Mol Phylogenet Evol 65:965–973PubMedGoogle Scholar
  81. Velo-Antón G, Zamudio KR, Cordero-Rivera A (2012b) Genetic drift and rapid evolution of viviparity in insular fire salamanders (Salamandra salamandra). Heredity 108:410–418PubMedGoogle Scholar
  82. Velo-Antón G, Parra JL, Parra-Olea G, Zamudio KR (2013) Tracking climate change in a dispersal-limited species: reduced spatial and genetic connectivity in a montane salamander. Mol Ecol 22:3261–3278PubMedGoogle Scholar
  83. Velo-Antón G, Santos X, Sanmartín-Villar I, Cordero-Rivera A, Buckley D (2015) Intraspecific variation in clutch size and maternal investment in pueriparous and larviparous Salamandra salamandra females. Evol Ecol 29:185–204Google Scholar
  84. Vences M, Sanchez E, Hauswaldt JS, Eikelmann D, Rodríguez A, Carranza S, Donaire D, Gehara M, Helfer V, Lötters S, Werner P, Schulz S, Steinfartz S (2014) Nuclear and mitochondrial multilocus phylogeny and survey of alkaloid content in true salamanders of the genus Salamandra (Salamandridae). Mol Phylogenet Evol 73:208–216PubMedGoogle Scholar
  85. Wang IJ (2013) Examining the full effects of landscape heterogeneity on spatial genetic variation: a multiple matrix regression approach for quantifying geographic and ecological isolation. Evolution 67:3403–3411PubMedGoogle Scholar
  86. Wang J (2018) Effects of sampling close relatives on some elementary population genetics analyses. Mol Ecol Resour 18:41–54PubMedGoogle Scholar
  87. Wang IJ, Bradburd GS (2014) Isolation by environment. Mol Ecol 23:5649–5662PubMedGoogle Scholar
  88. Wang IJ, Glor RE, Losos JB (2013) Quantifying the roles of ecology and geography in spatial genetic divergence. Ecol Lett 16:175–182PubMedGoogle Scholar
  89. Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370PubMedGoogle Scholar
  90. Wright S (1943) Isolation by distance. Genetics 28:114–138PubMedPubMedCentralGoogle Scholar
  91. Zellmer AJ, Knowles LL (2009) Disentangling the effects of historic vs. contemporary landscape structure on population genetic divergence. Mol Ecol 18:3593–3602PubMedGoogle Scholar
  92. Zhang P, Papenfuss TJ, Wake MH, Qu L, Wake DB (2008) Phylogeny and biogeography of the family Salamandridae (Amphibia: Caudata) inferred from complete mitochondrial genomes. Mol Phylogenet Evol 49:586–597PubMedGoogle Scholar
  93. Zhang YH, Wang IJ, Comes HP, Peng H, Qiu YX (2016) Contributions of historical and contemporary geographic and environmental factors to phylogeographic structure in a Tertiary relict species, Emmenopterys henryi (Rubiaceae). Sci Rep 6:24041PubMedPubMedCentralGoogle Scholar
  94. Zuur AF, Ieno EN, Elphick CS (2010) A protocol for data exploration to avoid common statistical problems. Methods Ecol Evol 1:3–14Google Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto, Instituto de Ciências Agrárias de VairãoVairãoPortugal
  2. 2.Departamento de Biologia da Faculdade de Ciências da Universidade do PortoPortoPortugal
  3. 3.CEFE UMR 5175, CNRS – Université Montpellier - Université Paul-Valery Montpellier - EPHEMontpellier, Cedex 5France
  4. 4.Museu de História Natural e da Ciência da Universidade do Porto (MHNC-UP)PortoPortugal
  5. 5.Departamento de Biodiversidad y Biología EvolutivaMuseo Nacional de Ciencias Naturales MNCN-CSICMadridSpain

Personalised recommendations