Advertisement

Improving conservation policy with genomics: a guide to integrating adaptive potential into U.S. Endangered Species Act decisions for conservation practitioners and geneticists

  • W. C. Funk
  • Brenna R. Forester
  • Sarah J. Converse
  • Catherine Darst
  • Steve Morey
Review Article

Abstract

Rapid environmental change makes adaptive potential—the capacity of populations to evolve genetically based changes in response to selection—more important than ever for long-term persistence of at-risk species. At the same time, advances in genomics provide unprecedented power to test for and quantify adaptive potential, enabling consideration of adaptive potential in estimates of extinction risk and laws protecting endangered species. The U.S. Endangered Species Act (ESA) is one of the most powerful environmental laws in the world, but so far, the full potential of genomics in ESA listing and recovery decisions has not been realized by the federal agencies responsible for implementing the ESA or by conservation geneticists. The goal of our paper is to chart a path forward for integrating genomics into ESA decision making to facilitate full consideration of adaptive potential in evaluating long-term risk of extinction. For policy makers, managers, and other conservation practitioners, we outline why adaptive potential is important for population persistence and what genomic tools are available for quantifying it. For conservation geneticists, we discuss how federal agencies can integrate information on the effect of adaptive potential on extinction risk—and the related uncertainty—into decisions, and suggest next steps for advancing understanding of the effect of adaptive potential on extinction risk. The mechanisms and consequences of adaptation are incredibly complex, and we may never have a complete understanding of adaptive potential for any organism. Nevertheless, we argue that the best available evidence regarding adaptive potential can now be incorporated by federal agencies into modeling and decision making processes, while at the same time conserving genome-wide variation and striving for a deeper understanding of adaptive potential and its effects on population persistence to improve decision making into the future.

Keywords

Adaptation Genomics U.S. Endangered Species Act Conservation policy Extinction risk 

Notes

Acknowledgements

We first thank A. Rus Hoelzel for inviting WCF to the Discussion Meeting at Durham University in September 2017 on “Conserving Adaptive Potential and Functional Diversity.” Without Rus’ initiative and perseverance in organizing this meeting, we would not have been spurred to assemble the diverse team of coauthors needed to bring together the ideas outlined here. We also thank Robin Waples and Gordon Luikart for excellent suggestions for improving the manuscript. We acknowledge funding from Colorado State University and National Science Foundation Ecology of Infectious Diseases Grant (DEB 1413925). The findings and conclusions in this article are those of the authors and do not necessarily represent the views of the US Fish and Wildlife Service.

References

  1. Agashe D, Falk JJ, Bolnick DI (2011) Effects of founding genetic variation on adaptation to a novel resource. Evolution 65:2481–2491PubMedCrossRefGoogle Scholar
  2. Aitken SN, Whitlock MC (2013) Assisted gene flow to facilitate local adaptation to climate change. Annu Rev Ecol Evol Syst 44:367–388.  https://doi.org/10.1146/annurev-ecolsys-110512-135747 CrossRefGoogle Scholar
  3. Allendorf FW, Hohenlohe PA, Luikart G (2010) Genomics and the future of conservation genetics. Nat Rev Genet 11:697–709PubMedCrossRefGoogle Scholar
  4. Allendorf FW, Luikart G, Aitken SN (2013) Conservation and the genetics of populations, 2nd edn. Wiley, OxfordGoogle Scholar
  5. Alvarez M, Schrey AW, Richards CL (2015) Ten years of transcriptomics in wild populations: what have we learned about their ecology and evolution? Mol Ecol 24:710–725PubMedCrossRefGoogle Scholar
  6. Andrews KR, Good JM, Miller MR et al (2016) Harnessing the power of RADseq for ecological and evolutionary genomics. Nat Rev Genet 17:81–92.  https://doi.org/10.1038/nrg.2015.28 PubMedPubMedCentralCrossRefGoogle Scholar
  7. Bataille A, Cashins SD, Grogan L, Skerratt LF, Hunter D, McFadden M, Scheele B, Brannelly LA, Macris A, Harlow PS, Bell S, Berger L, Waldman B (2015) Susceptibility of amphibians to chytridiomycosis is associated with MHC class II conformation. Proc R Soc B 282:20143127PubMedCrossRefGoogle Scholar
  8. Beaumont MA, Balding DJ (2004) Identifying adaptive genetic divergence among populations from genome scans. Mol Ecol 13:969–980PubMedCrossRefGoogle Scholar
  9. Bell G, Collins S (2008) Adaptation, extinction and global change. Evol Appl 1:3–16PubMedPubMedCentralCrossRefGoogle Scholar
  10. Bell G, Gonzalez A (2009) Evolutionary rescue can prevent extinction following environmental change. Ecol Lett 12:942–948.  https://doi.org/10.1111/j.1461-0248.2009.01350.x PubMedCrossRefGoogle Scholar
  11. Bell G, Gonzalez A (2011) Adaptation and evolutionary rescue in metapopulations experiencing environmental deterioration. Science 332:1327–1330.  https://doi.org/10.1126/science.1203105 PubMedCrossRefGoogle Scholar
  12. Berg JJ, Coop G (2014) A population genetic signal of polygenic adaptation. PLOS Genet 10:e1004412.  https://doi.org/10.1371/journal.pgen.1004412 PubMedPubMedCentralCrossRefGoogle Scholar
  13. Bernatchez L (2016) On the maintenance of genetic variation and adaptation to environmental change: considerations from population genomics in fishes. J Fish Biol 89:2519–2556PubMedCrossRefGoogle Scholar
  14. Berven KA (1982) The genetic basis of altitudinal variation in the wood frog Rana sylvatica. I. An experimental analysis of life history traits. Evolution 36:962–983PubMedGoogle Scholar
  15. Bierne N, Roze D, Welch JJ (2013) Pervasive selection or is it… why are FST outliers sometimes so frequent? Mol Ecol 22:2061–2064.  https://doi.org/10.1111/mec.12241 PubMedCrossRefGoogle Scholar
  16. Black WCIV, Baer CF, Antolin MF, DuTeau NM (2001) Population genomics: genome-wide sampling of insect populations. Annu Rev Entomol 46:441–469PubMedCrossRefGoogle Scholar
  17. Blows MW, Hoffmann AA (2005) A reassessment of genetic limits to evolutionary change. Ecology 86:1371–1384.  https://doi.org/10.1890/04-1209 CrossRefGoogle Scholar
  18. Bonin A, Nicole F, Pompanon F et al (2007) Population adaptive index: a new method to help measure intraspecific genetic diversity and prioritize populations for conservation. Conserv Biol 21:697–708.  https://doi.org/10.1111/j.1523-1739.2007.00685.x PubMedCrossRefGoogle Scholar
  19. Boyd C, DeMaster DP, Waples RS, Ward EJ, Taylor BL (2017) Consistent extinction risk assessment under the U.S. Endangered Species Act. Conserv Lett 10:328–336.  https://doi.org/10.1111/conl.12269 CrossRefGoogle Scholar
  20. Brosi BJ, Biber EG (2009) Statistical inference, Type II error, and decision making under the US Endangered Species Act. Front Ecol Environ 7:487–494CrossRefGoogle Scholar
  21. Burger R, Lynch M (1995) Evolution and extinction in a changing environment—a quantitative-genetic analysis. Evolution 49:151–163PubMedCrossRefGoogle Scholar
  22. Canessa S, Guillera-Arroita G, Lahoz-Monfort JJ, Southwell DM, Armstrong DP, Chadès I, Lacy RC, Converse SJ (2015) When do we need more data? A primer on calculating the value of information for applied ecologists. Methods Ecol Evol 6:1219–1228CrossRefGoogle Scholar
  23. Carroll R, Augspurger C, Dobson A, Franklin J, Orians G, Reid W, Tracy R, Wilcove D, Wilson J (1996) Strengthening the use of science in achieving the goals of the endangered species act: an assessment by the Ecological Society of America. Ecol Appl 6:1–11CrossRefGoogle Scholar
  24. Catchen J, Hohenlohe PA, Bassham S, Amores A, Cresko WA (2013) Stacks: an analysis tool set for population genomics. Mol Ecol 22:3124–3140PubMedPubMedCentralCrossRefGoogle Scholar
  25. Catchen JM, Hohenlohe PA, Bernatchez L et al (2017) Unbroken: RADseq remains a powerful tool for understanding the genetics of adaptation in natural populations. Mol Ecol Resour 17:362–365.  https://doi.org/10.1111/1755-0998.12669 PubMedCrossRefGoogle Scholar
  26. Cattau CE, Fletcher RJ Jr, Kimball RT, Miller CW, Kitchens WM (2017) Rapid morphological change of a top predator with the invasion of a novel prey. Nature Ecol Evol 2(1):108CrossRefGoogle Scholar
  27. Claussen J, Keck DD, Hiesey WM (1948) Experimental studies on the nature of species. III. Environmental responses of climatic races of Achillea. Carnegie Institution of Washington Publication, WashingtonGoogle Scholar
  28. Converse SJ, Moore CT, Armstrong DP (2013) Demographics of reintroduced populations: estimation, modeling, and decision analysis. J Wildl Manag 77:1081–1093CrossRefGoogle Scholar
  29. Converse SJ, Bailey LL, Mosher BA, Funk WC, Gerber BD, Muths E (2017) A model to inform management actions as a response to chytridiomycosis-associated decline. Ecohealth 14:S144–S155CrossRefGoogle Scholar
  30. Coop G, Witonsky D, Di Rienzo A, Pritchard JK (2010) Using environmental correlations to identify loci underlying local adaptation. Genetics 185:1411–1423PubMedPubMedCentralCrossRefGoogle Scholar
  31. Crandall KA, Bininda-Emonds ORP, Mace GM, Wayne RK (2000) Considering evolutionary processes in conservation biology. Trends Ecol Evol 15:290–295PubMedCrossRefGoogle Scholar
  32. Creech TG, Epps CW, Landguth EL et al (2017) Simulating the spread of selection-driven genotypes using landscape resistance models for desert bighorn sheep. PLoS ONE 12:e0176960.  https://doi.org/10.1371/journal.pone.0176960 PubMedPubMedCentralCrossRefGoogle Scholar
  33. Davey JW, Hohenlohe PA, Etter PD, Boone JQ, Catchen JM, Blaxter ML (2011) Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat Rev Genet 12:499–510PubMedCrossRefGoogle Scholar
  34. Dawson TP, Jackson ST, House JI et al (2011) Beyond predictions: biodiversity conservation in a changing climate. Science 332:53–58.  https://doi.org/10.1126/science.1200303 PubMedCrossRefGoogle Scholar
  35. de Villemereuil P, Frichot É, Bazin É et al (2014) Genome scan methods against more complex models: when and how much should we trust them? Mol Ecol 23:2006–2019.  https://doi.org/10.1111/mec.12705 PubMedCrossRefGoogle Scholar
  36. Doak DF, Himes Boor GK, Bakker VJ, Morris WF, Louthan A, Morrison SA, Stanley S, Crowder LB (2015) Recommendations for improving recovery criteria under the US Endangered Species Act. Bioscience 65:189–199CrossRefGoogle Scholar
  37. Dobzhansky T, Wright S (1941) Genetics of natural populations. V. Relations between mutation rate and accumulation of lethals in populations of Drosophila pseudoobscura. Genetics 26:23–51PubMedPubMedCentralGoogle Scholar
  38. Doremus H (1997) Listing decisions under the Endangered Species Act: why better science isn’t always better policy. Wash Univ Law Q 75:1029–1153Google Scholar
  39. [ESA] US Endangered Species Act of 1973, as amended, Pub. L. No. 93-205, 87 Stat. 884 (28 Dec 1973). http://www.fws.gov/endangered/esa-library/pdf/ESAall.pdf
  40. Falconer DS, Mackay TFC (1996) Introduction to quantitative genetics. Longman, HarlowGoogle Scholar
  41. Ficetola GF, De Bernardi F (2005) Supplementation or in situ conservation? Evidence of local adaptation in the Italian agile frog Rana latastei and consequences for the management of populations. Anim Conserv 8:33–40.  https://doi.org/10.1017/S1367943004001805 CrossRefGoogle Scholar
  42. Fisher RA (1930) The genetical theory of natural selection. Clarendon Press, OxfordCrossRefGoogle Scholar
  43. Forester BR, Lasky JR, Wagner HH, Urban DL (2018) Comparing methods for detecting multilocus adaptation with multivariate genotype-environment associations. Mol Ecol 27:2215–2233PubMedCrossRefGoogle Scholar
  44. François O, Martins H, Caye K, Schoville SD (2016) Controlling false discoveries in genome scans for selection. Mol Ecol 25:454–469PubMedCrossRefGoogle Scholar
  45. Frankham R, Lees K, Montgomery ME, England PR, Lowe EH, Briscoe DA (1999) Do population size bottlenecks reduce evolutionary potential? Anim Conserv 2:255–260CrossRefGoogle Scholar
  46. Frankham R, Ballou JD, Briscoe AD (2002) Introduction to conservation genetics. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  47. Frankham R, Brook BW, Bradshaw CJA, Traill LW, Spielman D (2013) 50/500 rule and minimum viable populations: response to Jamieson and Allendorf. Trends Ecol Evol 28:187–188PubMedCrossRefGoogle Scholar
  48. Franklin IR (1980) Evolutionary change in small populations. In: Soulé ME, Wilcox BA (eds) Conservation biology: an evolutionary-ecological perspective. Sinauer Associates, SunderlandGoogle Scholar
  49. Franks SJ, Kane NC, O’Hara NB, Tittes S, Rest JS (2016) Rapid genome-wide evolution in Brassica rapa populations following drought revealed by sequencing of ancestral and descendant gene pools. Mol Ecol 25:3622–3631PubMedPubMedCentralCrossRefGoogle Scholar
  50. Fraser DJ, Bernatchez L (2001) Adaptive evolutionary conservation: towards a unified concept for defining conservation units. Mol Ecol 10:2741–2752PubMedCrossRefGoogle Scholar
  51. Frichot E, Schoville SD, Bouchard G, Francois O (2013) Testing for associations between loci and environmental gradients using latent factor mixed models. Mol Biol Evol 30:1687–1699PubMedPubMedCentralCrossRefGoogle Scholar
  52. Fritts TH (1984) Evolutionary divergence of giant tortoises in Galapagos. Biol J Linn Soc 21:165–176.  https://doi.org/10.1111/j.1095-8312.1984.tb02059.x CrossRefGoogle Scholar
  53. Funk WC, McKay JK, Hohenlohe PA, Allendorf FW (2012) Harnessing genomics for delineating conservation units. Trends Ecol Evol 27:489–496.  https://doi.org/10.1016/j.tree.2012.05.012 PubMedPubMedCentralCrossRefGoogle Scholar
  54. Garant D, Forde SE, Hendry AP (2007) The multifarious effects of dispersal and gene flow on contemporary adaptation. Funct Ecol 21:434–443CrossRefGoogle Scholar
  55. Garner BA, Hand BK, Amish SJ, Bernatchez L, Foster JT, Miller KM, Morin PA, Narum SR, O’Brien SJ, Roffler G, Templin WD, Sunnucks P, Strait J, Warheit KI, Seamons TR, Wenburg J, Olsen J, Luikart G (2016) Genomics in conservation: case studies and bridging the gap between data and application. Trends Ecol Evol 31:81–83PubMedCrossRefGoogle Scholar
  56. Garrard GE, Rumpff L, Runge MC, Converse SJ (2017) Rapid prototyping for decision structuring: an efficient approach to conservation decision analysis. In: Bunnefeld N, Nicholson E, Milner-Gulland E (eds) Decision-making in conservation and natural resource management: models for interdisciplinary approaches. Cambridge University Press, CambridgeGoogle Scholar
  57. Gienapp P, Fior S, Guillaume F, Lasky JR, Sork VL, Csillery K (2017) Genomic quantitative genetics to study evolution in the wild. Trends Ecol Evol 32:897–908PubMedCrossRefGoogle Scholar
  58. Glenn TC (2011) Field guide to next-generation DNA sequencers. Mol Ecol Resour 11:759–769PubMedCrossRefGoogle Scholar
  59. Gregory R, Failing L, Harstone M, Long G, McDaniels T, Ohlson D (2012) Structured decision making: a practical guide to environmental management choices. Wiley, OxfordCrossRefGoogle Scholar
  60. Haig SM, D’Elia J (2010) Avian subspecies and the U.S. Endangered Species Act. Ornithol Monogr 67:24–34CrossRefGoogle Scholar
  61. Haldane JBS (1930) A mathematical theory of natural and artificial selection (VI Isolation). Proc Cambridge Philos Soc 26:220–230CrossRefGoogle Scholar
  62. Hansen MM, Olivieri I, Waller DM, Nielsen EE, Grp GW (2012) Monitoring adaptive genetic responses to environmental change. Mol Ecol 21:1311–1329PubMedCrossRefGoogle Scholar
  63. Hanson JO, Rhodes JR, Riginos C, Fuller RA (2017) Environmental and geographic variables are effective surrogates for genetic variation in conservation planning. PNAS 114:12755–12760PubMedCrossRefGoogle Scholar
  64. Harrisson KA, Pavlova A, Telonis-Scott M, Sunnucks P (2014) Using genomics to characterize evolutionary potential for conservation of wild populations. Evol Appl 7:1008–1025.  https://doi.org/10.1111/eva.12149 PubMedPubMedCentralCrossRefGoogle Scholar
  65. Hendry AP, Kinnison MT, Heino M et al (2011) Evolutionary principles and their practical application. Evol Appl 4:159–183.  https://doi.org/10.1111/j.1752-4571.2010.00165.x PubMedPubMedCentralCrossRefGoogle Scholar
  66. Hess JE, Zendt JS, Matala AR, Narum SR (2016) Genetic basis of adult migration timing in anadromous steelhead discovered through multivariate association testing. Proc R Soc B 283.  https://doi.org/10.1098/rspb.2015.3064
  67. Hoffmann AA, Sgro CM (2011) Climate change and evolutionary adaptation. Nature 470:479–485PubMedCrossRefGoogle Scholar
  68. Hoffmann AA, Hallas RJ, Dean JA, Schiffer M (2003) Low potential for climatic stress adaptation in a rainforest Drosophila species. Science 301:100–102.  https://doi.org/10.1126/science.1084296 PubMedCrossRefGoogle Scholar
  69. Hoffmann AA, Sgro CM, Kristensen TN (2017) Revisting adaptive potential, population size, and conservation. Trends Ecol Evol 32:506–517.  https://doi.org/10.1016/j.tree.2017.03.012 PubMedCrossRefGoogle Scholar
  70. Hohenlohe PA, Day MD, Amish SJ, Miller MR, Kamps-Hughes N, Boyer MC, Muhlfeld CC, Allendorf FW, Johnson EA, Luikart G (2013) Genomic patterns of introgression in rainbow and westslope cutthroat trout illuminated by overlapping paired-end RAD sequencing. Mol Ecol 22:3002–3013PubMedPubMedCentralCrossRefGoogle Scholar
  71. Hong EP, Park JW (2012) Sample size and statistical power calculation in genetic association studies. Genomics Inform 10:117–122.  https://doi.org/10.5808/GI.2012.10.2.117 PubMedPubMedCentralCrossRefGoogle Scholar
  72. Jamieson IG, Allendorf FW (2012) How does the 50/500 rule apply to MVPs? Trends Ecol Evol 27:578–584PubMedCrossRefGoogle Scholar
  73. Jamieson IG, Allendorf FW (2013) A school of red herring: reply to Frankham et al. Trends Ecol Evol 28:188–189PubMedCrossRefGoogle Scholar
  74. Johnson FA, Hagan G, Palmer WE, Kemmerer M (2014) Uncertainty, robustness, and the value of information in managing a population of northern bobwhites. J Wildl Manag 78:531–539CrossRefGoogle Scholar
  75. Joost S, Bonin A, Bruford MW, Despres L, Conord C, Erhardt G, Taberlet P (2007) A spatial analysis method (SAM) to detect candidate loci for selection: towards a landscape genomics approach to adaptation. Mol Ecol 16:3955–3969PubMedCrossRefGoogle Scholar
  76. Keeney RL (1992) Value-focused thinking: a path to creative decision making. Harvard University Press, CambridgeGoogle Scholar
  77. Keith D, Akçakaya HR, Butchart SHM, Collen B, Dulvy NK, Homes EE, Hutchings JA, Keinath D, Schwartz MK, Shelton AO, Wapes RS (2015) Temporal correlations in population trends: conservation implications from time-series analysis of diverse animal taxa. Biol Conserv 192:247–257CrossRefGoogle Scholar
  78. Kellermann VM, Heerwaarden B van, Hoffmann AA, Sgrò CM (2006) Very low additive genetic variance and evolutionary potential in multiple populations of two rainforest Drosophila species. Evolution 60:1104–1108.  https://doi.org/10.2307/4095411 PubMedCrossRefGoogle Scholar
  79. Kelly MW, Sanford E, Grosberg RK (2012) Limited potential for adaptation to climate change in a broadly distributed marine crustacean. Proc R Soc B 279:349–356PubMedCrossRefGoogle Scholar
  80. Kimura M, Crow JF (1963) The measurement of the effective population number. Evolution 17:279–288CrossRefGoogle Scholar
  81. Korte A, Farlow A (2013) The advantages and limitations of trait analysis with GWAS: a review. Plant Methods 9:29PubMedPubMedCentralCrossRefGoogle Scholar
  82. Kovach RP, Gharrett AJ, Tallmon DA (2012) Genetic change for earlier migration timing in a pink salmon population. Proc R Soc B 279:3870–3878PubMedCrossRefGoogle Scholar
  83. Lasky JR, Upadhyaya HD, Ramu P et al (2015) Genome-environment associations in sorghum landraces predict adaptive traits. Sci Adv 1:e1400218.  https://doi.org/10.1126/sciadv.1400218 PubMedPubMedCentralCrossRefGoogle Scholar
  84. Lemmon AR, Emme SA, Lemmon EM (2012) Anchored hybrid enrichment for massively high-throughput phylogenomics. Syst Biol 61:727–744PubMedCrossRefGoogle Scholar
  85. Li S, Li B, Cheng C et al (2014) Genomic signatures of near-extinction and rebirth of the crested ibis and other endangered bird species. Genome Biol 15:557.  https://doi.org/10.1186/s13059-014-0557-1 PubMedPubMedCentralCrossRefGoogle Scholar
  86. Lowry DB, Hoban S, Kelley JL et al (2016) Breaking RAD: an evaluation of the utility of restriction site-associated DNA sequencing for genome scans of adaptation. Mol Ecol Resour 17:142–152.  https://doi.org/10.1111/1755-0998.12635 PubMedPubMedCentralCrossRefGoogle Scholar
  87. Luikart G, England PR, Tallmon D, Jordan S, Taberlet P (2003) The power and promise of population genomics: from genotyping to genome typing. Nat Rev Genet 4:981–994PubMedCrossRefGoogle Scholar
  88. Manel S, Perrier C, Pratlong M, Abi-Rached L, Paganini J, Pontarotti P, Aurelle D (2016) Genomic resources and their influence on the detection of the signal of positive selection in genome scans. Mol Ecol 25:170–184PubMedCrossRefGoogle Scholar
  89. McKay JK, Bishop JG, Lin JZ, Richards JH, Sala A, Mitchell-Olds T (2001) Local adaptation across a climatic gradient despite small effective population size in the rare sapphire rockcress. Proc R Soc B 268:1715–1721PubMedCrossRefGoogle Scholar
  90. McKinney GJ, Larson WA, Seeb LW, Seeb JE (2017) RADseq provides unprecedented insights into molecular ecology and evolutionary genetics: comment on Breaking RAD by Lowry et al. (2016). Mol Ecol Resour 17:356–361.  https://doi.org/10.1111/1755-0998.12649 PubMedCrossRefGoogle Scholar
  91. Merilä J, Hendry AP (2014) Climate change, adaptation, and phenotypic plasticity: the problem and the evidence. Evol Appl 7:1–14.  https://doi.org/10.1111/eva.12137 PubMedPubMedCentralCrossRefGoogle Scholar
  92. Muñoz NJ, Farrell AP, Heath JW, Neff BD (2015) Adaptive potential of a Pacific salmon challenged by climate change. Nat Clim Change 5:163–166CrossRefGoogle Scholar
  93. Nagy ES, Rice KJ (1997) Local adaptation in two subspecies of an annual plant: implications for migration and gene flow. Evolution 51:1079–1089CrossRefGoogle Scholar
  94. [NMFS and USFWS] National Marine Fisheries Serivice and U.S. Fish and Wildlife Service (2010) Interim endangered and threatened species recover planning guidance, version 1.3. http://www.nmfs.noaa.gov/pr/recovery/
  95. Neel MC, Leidner AK, Haines A, Goble DD, Scott JM (2012) By the numbers: how is recovery defined by the US Endangered. Species Act? BioScience 62:646–657CrossRefGoogle Scholar
  96. Nicotra AB, Beever EA, Robertson AL et al (2015) Assessing the components of adaptive capacity to improve conservation and management efforts under global change. Conserv Biol 29:1268–1278.  https://doi.org/10.1111/cobi.12522 PubMedCrossRefGoogle Scholar
  97. O’Connor MI, Selig ER, Pinsky ML, Altermatt F (2012) Toward a conceptual synthesis for climate change responses. Glob Ecol Biogeogr 21:693–703CrossRefGoogle Scholar
  98. Payseur BA, Rieseberg LH (2016) A genomic perspective on hybridization and speciation. Mol Ecol 25:2337–2360PubMedPubMedCentralCrossRefGoogle Scholar
  99. Penuelas J, Sardans J, Estiarte M, Ogaya R, Carnicer J, Coll M, Barbeta A, Rivas-Ubach A, Llusia J, Garbulsky M, Filella I, Jump AS (2013) Evidence of current impact of climate change on life: a walk from genes to the biosphere. Glob Chang Biol 19:2303–2338PubMedCrossRefGoogle Scholar
  100. Perrier C, Delahaie B, Charmantier A (2018) Heritability estimates from genomewide relatedness matrices in wild populations: application to a passerine, using a small sample size. Mol Ecol Resour (in press)Google Scholar
  101. Prince DJ, O’Rourke SM, Thompson TQ, Ali OA, Lyman HS, Saglam IK, Hotaling TJ, Spidle AP, Miller MR (2017) The evolutionary basis of premature migration in Pacific salmon highlights the utility of genomics for informing conservation. Sci Adv 3:e1603198PubMedPubMedCentralCrossRefGoogle Scholar
  102. Reed TE, Schindler DE, Hague MJ, Patterson DA, Meir E, Waples RS, Hinch SG (2011) Time to evolve? Potential evolutionary responses of Fraser River sockeye salmon to climate change and effects on persistence. PLoS ONE 6:e20380PubMedPubMedCentralCrossRefGoogle Scholar
  103. Regan TJ, Taylor BL, Thompson GG, Cochrane JF, Ralls K, Runge MC, Merrick R (2013) Testing decision rules for categorizing species’ extinction risk to help develop quantitative listing criteria for the U.S. Endangered Species Act. Conserv Biol 27:821–831PubMedCrossRefGoogle Scholar
  104. Rellstab C, Gugerli F, Eckert AJ et al (2015) A practical guide to environmental association analysis in landscape genomics. Mol Ecol 24:4348–4370.  https://doi.org/10.1111/mec.13322 PubMedCrossRefGoogle Scholar
  105. Rohlf DJ (1991) Six biological reasons the Endangered Species Act doesn’t work—and what to do about it. Conserv Biol 5:273–282CrossRefGoogle Scholar
  106. Ruegg K, Bay RA, Anderson EC, Saracco JF, Harrigan RJ, Whitfield M, Paxton EH, Smith TB (2018) Ecological genomics predicts climate vulnerability in an endangered southwestern songbird. Ecol Lett (in press)Google Scholar
  107. Ruhl JB (2004) The battle over the Endangered Species Act methodology. FSU College of Law, Public Law Research Paper No. 99Google Scholar
  108. Runge MC (2011) An introduction to adaptive management for threatened and endangered species. J Fish Wildl Manag 2:220–233CrossRefGoogle Scholar
  109. Runge MC, Converse SJ, Lyons JE (2011) Which uncertainty? Using expert elicitation and expected value of information to design an adaptive program. Biol Conserv 144:1214–1223CrossRefGoogle Scholar
  110. Ryder OA (1986) Species conservation and systematics: the dilemma of subspecies. Trends Ecol Evol 1:9–10CrossRefGoogle Scholar
  111. Savage AE, Zamudio KR (2011) MHC genotypes associate with resistance to a frog-killing fungus. Proc Natl Acad Sci USA 108:16705–16710PubMedCrossRefGoogle Scholar
  112. Scheffers BR, De Meester L, Bridge TCL, Hoffmann AA, Pandolfi JM, Corlett RT, Butchart SHM, Pearce-Kelly P, Kovacs KM, Dudgeon D, Pacifici M, Rondinini C, Foden WB, Martin TG, Mora C, Bickford D, Watson JEM (2016) The broad footprint of climate change from genes to biomes to people. Science 354:aaf7671PubMedCrossRefGoogle Scholar
  113. Sgro C, Lowe A, Hoffmann A (2011) Building evolutionary resilience for conserving biodiversity under climate change. Evol Appl 4:326–337.  https://doi.org/10.1111/j.1752-4571.2010.00157.x PubMedCrossRefGoogle Scholar
  114. Shafer ABA, Wolf JBW, Alves PC, Bergstrom L, Bruford MW, Brannstrom I, Colling G, Dalen L, De Meester L, Ekblom R, Fawcett KD, Fior S, Hajibabaei M, Hill JA, Hoezel AR, Hoglund J, Jensen EL, Krause J, Kristensen TN, Krutzen M, McKay JK, Norman AJ, Ogden R, Ouml;sterling EM, Ouborg NJ, Piccolo J, Popovic D, Primmer CR, Reed FA, Roumet M, Salmona J, Schenekar T, Schwartz MK, Segelbacher G, Senn H, Thaulow J, Valtonen M, Veale A, Vergeer P, Vijay N, Vila C, Weissensteiner M, Wennerstrom L, Wheat CW, Zielinski P (2015) Genomics and the challenging translation into conservation practice. Trends Ecol Evol 30:78–87PubMedCrossRefGoogle Scholar
  115. Shaffer ML, Stein MA (2000) Safeguarding our precious heritage. In: Stein BA, Kutner LS, Adams JS (eds) Precious heritage: the status of biodiversity in the United States. Oxford University Press, New York, pp 301–321Google Scholar
  116. Sillanpää MJ (2011) On statistical methods for estimating heritability in wild populations. Mol Ecol 20:1324–1332PubMedCrossRefGoogle Scholar
  117. Slatkin M (1987) Gene flow and the geographic structure of natural populations. Science 236:787–792PubMedCrossRefGoogle Scholar
  118. Smith DR, Allan NL, McGowan CP, Szymanski JA, Oetker SR, Bell HM (2018) Development of a Species Status Assessment process for decisions under the U.S. Endangered Species Act. J Fish Wildl Manag 9:302–320CrossRefGoogle Scholar
  119. Sork VL (2018) Genomic studies of local adaptation in natural plant populations. J Hered 109:3–15CrossRefGoogle Scholar
  120. Stanton-Geddes J, Yoder JB, Briskine R, Young ND, Tiffin P (2013) Estimating heritability using genomic data. Methods Ecol Evol 4:1151–1158CrossRefGoogle Scholar
  121. Steane DA, Potts BM, McLean E et al (2014) Genome-wide scans detect adaptation to aridity in a widespread forest tree species. Mol Ecol 23:2500–2513.  https://doi.org/10.1111/mec.12751 PubMedCrossRefGoogle Scholar
  122. Steffen W, Broadgate W, Deutsch L, Gaffney O, Ludwig C (2015) The trajectory of the Anthropocene: the Great Acceleration. Anthropocene Rev 2:81–98CrossRefGoogle Scholar
  123. Szymanski J, Smith T, Horton A, Parkin M, Ragan L, Masson G, Olson E, Gifford K, Hill L (2016a) Rusty patched bumble bee (Bombus affinis) species status assessment. U.S. Fish and Wildlife Service, Final Report, Version 1Google Scholar
  124. Szymanski J, Pollack C, Ragan L, Redmer M, Clemency L, Voorhies K, JaKa J (2016b) Species status assessment for the eastern massasauga rattlesnake (Sistrurus catenatus). U.S. Fish and Wildlife Service, SSA Report Version 2Google Scholar
  125. Taylor MFJ, Suckling KF, Rachlinski JJ (2005) The effectiveness of the Endangered Species Act: a quantitative analysis. Bioscience 55:360–367CrossRefGoogle Scholar
  126. Theimer TC, Smith AD, Mahoney SM, Ironside KE (2016) Available data support protection of the Southwestern willow flycatcher under the Endangered Species Act. Condor 118:289–299CrossRefGoogle Scholar
  127. Thomas L, Palumbi SR (2017) The genomics of recovery from coral bleaching. Proc R Soc B  https://doi.org/10.1098/rspb.2017.1790 CrossRefPubMedGoogle Scholar
  128. Thorpe RS, Reardon JT, Malhotra A (2005) Common garden and natural selection experiments support ecotypic differentiation in the Dominican anole (Anolis oculatus). Am Nat 165:495–504PubMedCrossRefGoogle Scholar
  129. Todd EV, Black MA, Gemmell NJ (2016) The power and promise of RNA-seq in ecology and evolution. Mol Ecol 25:1224–1241.  https://doi.org/10.1111/mec.13526 PubMedCrossRefGoogle Scholar
  130. U.S. Fish and Wildlife Service (1995) Endangered and threatened wildlife and plants; final rule determining endangered status for the Southwestern Willow Flycatcher. Fed Reg 60:10694–10715Google Scholar
  131. [USFWS and NMFS] U.S. Fish and Wildlife Service and National Marine Fisheries Service (1996) Policy regarding the recognition of distinct vertebrate population segments under the Endangered Species Act. Fed Reg 61:4722–4725Google Scholar
  132. U.S. Fish and Wildlife Service (2016) Endangered and threatened wildlife and plants; threatened species status for rusty patched bumble bee. Fed Reg 82:3186–3208Google Scholar
  133. U.S. Fish and Wildlife Service (2017) Endangered and threatened wildlife and plants; endangered species status for the eastern massasauga rattlesnake. Fed Reg 81:667214–671936Google Scholar
  134. Verhoeven KJF, Vonholdt BM, Sork VL (2016) Epigenetics in ecology and evolution: what we know and what we need to know. Mol Ecol 25:1631–1638PubMedCrossRefGoogle Scholar
  135. Visscher PM, Goddard ME (2015) A general unified framework to assess the sampling variance of heritability estimates using pedigree or marker-based relationships. Genetics 199:223–232PubMedCrossRefGoogle Scholar
  136. Visscher PM, Hill WG, Wray NR (2008) Heritability in the genomics era—concepts and misconceptions. Nat Rev Genet 9:255–266PubMedCrossRefGoogle Scholar
  137. Vucetich JA, Nelson MP, Phillips MK (2006) The normative dimension and legal meaning of endangered and recovery in the US Endangered Species Act. Conserv Biol 20:1383–1390PubMedCrossRefGoogle Scholar
  138. Walters C (1986) Adaptive management of renewable resources. MacMillan, New YorkGoogle Scholar
  139. Waples RS (1991) Pacific salmon, Oncorhynchus spp., and the definition of ‘species’ under the Endangered Species Act. Act Mar Fish Rev 53:11–22Google Scholar
  140. Waples RS, Nammack M, Cochrane JF, Hutchings JA (2013) A tale of two acts: endangered species listing practices in Canada and the United States. Bioscience 63:723–734CrossRefGoogle Scholar
  141. Waples RK, Larson WA, Waples RS (2016) Estimating contemporary effective population size in non-model species using linkage disequilibrium across thousands of loci. Heredity 117:233–240PubMedPubMedCentralCrossRefGoogle Scholar
  142. Weeks AR, Sgro CM, Young AG et al (2011) Assessing the benefits and risks of translocations in changing environments: a genetic perspective. Evol Appl 4:709–725.  https://doi.org/10.1111/j.1752-4571.2011.00192.x PubMedPubMedCentralCrossRefGoogle Scholar
  143. White GC, Burnham KP (1999) Program MARK: survival estimation from populations of marked animals. Bird Study Suppl 46:120–138CrossRefGoogle Scholar
  144. Williams BK, Szaro RC, Shapiro CD (2007) Adaptive management: the U.S. Department of the Interior Technical Guide. Adaptive Management Working Group, U.S. Department of the Interior, Washington DCGoogle Scholar
  145. Williams BK, Eaton MJ, Breininger DR (2011) Adaptive resource management and the value of information. Ecol Modell 222:3429–3436CrossRefGoogle Scholar
  146. Wright S (1931) Evolution in Mendelian populations. Genetics 16:97–159PubMedPubMedCentralGoogle Scholar
  147. Wright S (1938) Size of population and breeding structure in relation to evolution. Science 87:430–431Google Scholar
  148. Wright S (1943) Isolation by distance. Genetics 28:114–138PubMedPubMedCentralGoogle Scholar
  149. Zink RM (2015) Genetics, morphology, and ecological niche modeling do not support the subspecies status of the endangered willow flycatcher (Empidonax traillii extimus). Condor 117:78–86CrossRefGoogle Scholar

Copyright information

© This is a U.S. government work and its text is not subject to copyright protection in the United States; however, its text may be subject to foreign copyright protection 2018

Authors and Affiliations

  • W. C. Funk
    • 1
    • 2
  • Brenna R. Forester
    • 1
  • Sarah J. Converse
    • 3
  • Catherine Darst
    • 4
  • Steve Morey
    • 5
  1. 1.Department of BiologyColorado State UniversityFort CollinsUSA
  2. 2.Graduate Degree Program in EcologyColorado State UniversityFort CollinsUSA
  3. 3.U.S. Geological Survey, Washington Cooperative Fish and Wildlife Research Unit, School of Environmental and Forest Sciences (SEFS) & School of Aquatic and Fishery Sciences (SAFS)University of WashingtonSeattleUSA
  4. 4.U.S. Fish and Wildlife ServiceVenturaUSA
  5. 5.U.S. Fish and Wildlife ServicePortlandUSA

Personalised recommendations