Skip to main content

Importance of landscape features and fire refuges on genetic diversity of Thuya occidentalis L., in boreal fire dominated landscapes

Abstract

The unburned forest remnants of boreal mixed-woods, also known as fire residuals, are essential in providing habitats for disturbance-sensitive species and function as the main source of recolonization of disturbed sites. Forest remnants have been identified as historical or potential reservoirs of genetic diversity in several tree species in fire-prone landscapes. In this study, we investigate the genetic diversity of eastern white cedar (EWC, Thuya occidentalis L.), in forest sites that were affected by different fire regimes. The study area is located in northwestern Quebec, in the Lake Duparquet Research and Teaching Forest (79°10′W–48°30′N). We used 18 polymorphic microsatellite loci to investigate the genetic diversity of eastern white cedar, in forest sites where the fire regime history has been reconstructed to examine the importance of the temporal and spatial continuity of the forest on the genetic diversity of EWC. Three types of landscapes, including; islands within a large lake, fragmented fire refuges (forest patches) and non-fragmented mainland forests were studied. Our results revealed a source-sink dynamic associated with a high level of gene flow. Two of the mainland sites served as the main source of migrants. The level of gene flow in island sites was sufficiently high to counteract the effect of isolation. The fire refuges showed the lowest allelic richness, the highest population differentiation and the fewest number of private alleles. The mean fire-free intervals are much longer in fire-refuges causing environmental isolation through time and higher genetic differentiation. The conservation of large mainland sites should be given careful attention because they maintained high genetic diversity and function as the main source of gene flow. Fire refuges have an intrinsic conservation value in landscapes that are affected by spatially heterogeneous fires because they are important for population persistence through disturbances.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  • Antolin MF, Savage LT, Eisen RJ (2006) Landscape features influence genetic structure of black-tailed prairie dogs (Cynomys ludovicianus). Landsc Ecol 21:867–875

    Article  Google Scholar 

  • Asselin H, Fortin MJ, Bergeron Y (2001) Spatial distribution of late-successional coniferous species regeneration following disturbance in southwestern Québec boreal forest. For Ecol Manag 140:9–37

    Article  Google Scholar 

  • Bacles CF, Burczyk J, Lowe AJ, Ennos RA (2005) Historical and contemporary mating patterns in remnant populations of the forest tree Fraxinus excelsior L. Evolution 59:979–990

    PubMed  Google Scholar 

  • Bacles CF, Lowe AJ, Ennos RA (2006) Effective seed dispersal across a fragmented landscape. Science 311:628. https://doi.org/10.1126/science.1121543

    Article  PubMed  Google Scholar 

  • Banks SC, Cary GJ, Smith LA, Davies ID, Driscoll DA, Gill AM, Lindenmayer DB, Peakall R (2013) How does ecological disturbance influence genetic diversity? Trends Ecol Evol 28:670–679

    Article  PubMed  Google Scholar 

  • Beaumont MA (1999) Detecting population expansion and decline using microsatellites. Genetics 153:2013–2029

    CAS  PubMed  PubMed Central  Google Scholar 

  • Belletti P, Monteleone I, Ferrazzini D (2007) Genetic variability at allozyme markers in sycamore (Acer pseudoplatanus) populations from northwestern Italy. Can J For Res 37:395–403

    CAS  Article  Google Scholar 

  • Bergeron Y (1991) The influence of island and mainland lakeshore landscapes on boreal forest fire regimes. Ecology 72:1980–1992

    Article  Google Scholar 

  • Bergeron Y (2000) Species and stand dynamics in the mixed woods of Quebec’s southern boreal forest. Ecology 81:1500–1516

    Article  Google Scholar 

  • Bergeron Y, Dubuc M (1989) Succession in the southern part of the Canadian boreal forest. Vegetatio 79:51–63

    Article  Google Scholar 

  • Bergeron Y, Fenton NJ (2012) Boreal forests of eastern Canada revisited: old growth, nonfire disturbances, forest succession, and biodiversity. Botany 90:509–523

    Article  Google Scholar 

  • Bergeron Y, Gauthier S, Flannigan M, Kafka V (2004) Fire regimes at the transition between mixedwood and coniferous boreal forest in northwestern Québec. Ecology 85(7):1916–1932

    Article  Google Scholar 

  • Carcaillet C, Bergeron Y, Richard PJH, Fréchette B, Gauthier S, Prairie YT (2001) Change of fire frequency in the eastern Canadian boreal forests during the Holocene: does vegetation composition or climate trigger the fire regime? J Ecol 89:930–946

    Article  Google Scholar 

  • Davies ID, Cary GJ, Landguth EL, Lindenmayer DB, Banks SC (2016) Implications of recurrent disturbance for genetic diversity. Ecol Evol 6:1181–1196

    Article  PubMed  PubMed Central  Google Scholar 

  • Denneler B, Asselin H, Bergeron Y, Bégin Y (2008) Decreased fire frequency and increased water levels affect riparian forest dynamics in southwestern boreal Quebec, Canada. Can J For Res 38:1083–1094

    Article  Google Scholar 

  • Drobyshev I, Flannigan MD, Bergeron Y, Girardin MP, Suran B (2010) Variation in boreal weather explains differences in fire regimes within a Québec south-eastern boreal forest landscape. Int J Wildland Fire 19:1073–1082

    Article  Google Scholar 

  • Earl D, Vonholdt B (2012) structure harvester: a website and program for visualizing structure output and implementing the evanno method. Conserv Genet Resour 4:359–361

    Article  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    CAS  Article  PubMed  Google Scholar 

  • Fenton NJ, Bergeron Y (2013) Stochastic processes dominate during boreal bryophyte community assembly. Ecology 94:1993–2006

    Article  PubMed  Google Scholar 

  • Foll M, Gaggiotti OE (2006) Identifying the environmental factors that determine the genetic structure of populations. Genetics 174:875–891

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Gandhi KJK, Spence JR, Langor DW, Morgantini LE (2001) Fire residuals as habitat reserves for epigaeic beetles (Coleoptera: Carabidae. and Staphylinidae). Biol Conserv 102:131–141

    Article  Google Scholar 

  • Gasaway WC, DuBois SD (1985) Initial response of moose, Alces alces, to a wildfire in Interior Alaska. Can Field Nat 99:135–140

    Google Scholar 

  • Gauthier S, Simon JP, Bergeron Y (1992) Genetic structure and variability in jack pine populations: effects of insularity. Can J For Res 22:1958–1965

    Article  Google Scholar 

  • Gauthier S, Vaillancourt MA, Leduc A, De Grandpré L, Kneeshaw D, Morin H, Drapeau P, Bergeron Y (2009) Ecosystem management in the boreal forest. Presses de l’Université du Québec, Quebec

    Google Scholar 

  • Girardin MP, Mudelsee M (2008) Past and future changes in Canadian boreal wildfire activity. Ecol Appl 18:391–406. https://doi.org/10.1890/07-0747.1

    Article  PubMed  Google Scholar 

  • Goudet J (2001) FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.3). http://www2.unil.ch/popgen/softwares/fstat.htm. Updated from Goudet (1995)

  • Hannon SJ, Schmiegelow FKA (2002) Corridors may not improve the conservation value of small reserves for most Boreal Birds. Ecol Appl 12:1457–1468

    Article  Google Scholar 

  • Hoebee S, Menn C, Rotach P, Finkeldey R, Holderegger R (2006) Spatial genetic structure of Sorbus torminalis: the extent of clonal reproduction in natural stands of a rare tree species with a scattered distribution. For Ecol Manag 226:1–8

    Article  Google Scholar 

  • Holderegger R, Buehler D, Gugerli F, Manel S (2010) Landscape genetics of plants. Trends Plant Sci 15:675–683

    CAS  Article  PubMed  Google Scholar 

  • Keeton WS (2000) Occurrence and reproductive role of remnant old-growth trees in mature Douglas-fir forests, southern Washington, Cascade Range. University of Washington, Seattle

  • Kremer A, Ronce O, Robledo-Arnuncio JJ, Guillaume F, Bohrer JR, Nathan G, Bridle R, Gomulkiewicz R, Klein EK, Ritland R, Kuparinen A, Gerber S, Schueler S (2012) Long-distance gene flow and adaptation of forest trees to rapid climate change. Ecol Lett 15:378–392

    Article  PubMed  PubMed Central  Google Scholar 

  • Lesser MR, Jackson ST (2013) Contributions of long-distance dispersal to population growth in colonising Pinus ponderosa populations. Ecol Lett 16:380–389

    Article  PubMed  Google Scholar 

  • Lindenmayer D, Hobbs RJ, Montague-Drake R et al (2008) A checklist for ecological management of landscapes for conservation. Ecol Lett 11: 78–91

    PubMed  Google Scholar 

  • Lind-Riehl J, Gailing O (2015) Fine-scale spatial genetic structure of two red oak species, Quercus rubra and Quercus ellipsoidalis. Plant Syst Evol 301:1601–1612

    Article  Google Scholar 

  • Luikart G, Cornuet JM (1998) Empirical evaluation of a test for identifying recently bottlenecked populations from allele frequency data. Conserv Biol 12:228–237

    Article  Google Scholar 

  • Manel S, Schwartz MK, Luikart G, Taberlet P (2003) Landscape genetics: combining landscape ecology and population genetics. Trends Ecol Evol 18:189–197

    Article  Google Scholar 

  • Mosseler A, Major JE, Rajora OP (2003) Old-growth red spruce forests as reservoirs of genetic diversity and reproductive fitness. Theor Appl Genet 106:931–937

    CAS  Article  PubMed  Google Scholar 

  • Nathan R, Horvitz N, He Y, Kuparinen A, Schurr FM, Katul GG (2011) Spread of North American wind-dispersed trees in future environments. Ecol Lett 14:211–219

    Article  PubMed  Google Scholar 

  • Oddou-Muratorio S, Demesure-Musch B, Pelissier R, Gouyon PH (2004) Impacts of gene flow and logging history on the local genetic structure of a scattered tree species, Sorbus torminalis L. Crantz. Mol Ecol 13:3689–3702

    Article  PubMed  Google Scholar 

  • Ouarmim S, Asselin H, Hely C, Bergeron Y, Ali AA (2014) Long-term dynamics of fire refuges in boreal mixedwood forests. J Quat Sci 29:123–129

    Article  Google Scholar 

  • Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Premoli AC, Kitzberger T (2005) Regeneration mode affects spatial genetic structure of Nothofagus dombeyi forests. Mol Ecol 14:2319–2329

    CAS  Article  PubMed  Google Scholar 

  • Premoli AC, Steinke L (2008) Genetics of sprouting: effects of long-term persistence in fire-prone ecosystems. Mol Ecol 17:3827–3835

    Article  PubMed  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Raftery AE, Lewis SM (1995) The number of iterations, convergence diagnostics and generic Metropolis algorithms. In: Gilks WR, Spiegel-Halter DJ, Richardson S (eds) Practical Markov Chain Monte Carlo. Chapman and Hall, London

    Google Scholar 

  • Rosenberg NA (2004) DISTRUCT: a program for the graphical display of population structure. Mol Ecol Notes 4:137–138

    Article  Google Scholar 

  • Rousset F (2008) GENEPOP ’ 007: a complete re-implementation of the GENEPOP software for Windows and Linux. Mol Ecol Res 8:103–106

    Article  Google Scholar 

  • Savolainen O, Pyhäjärvi T, Knürrr T (2007) Gene flow and local adaptation in trees. Annu Rev Ecol Evol S 38:595–619

    Article  Google Scholar 

  • Shohami D, Nathan R (2014) Fire-induced population reduction and landscape opening increases gene flow via pollen dispersal in Pinus halepensis. Mol Ecol 23:70–81

    CAS  Article  PubMed  Google Scholar 

  • Storfer A, Murphy MA, Spear SF, Holderegger R, Waits LP (2010) Landscape genetics: where are we now? Mol Ecol 19:3496–3514

    Article  PubMed  Google Scholar 

  • Storz JF, Beaumont MA (2002) Testing for genetic evidence of population expansion and contraction: an empirical analysis of microsatellite DNA variation using a hierarchical Bayesian model. Evolution 56:154–166

    CAS  Article  PubMed  Google Scholar 

  • Turner MG, Romme WH, Gardner RH, Hargrove WW (1997) Effects of fire size and pattern on early succession in Yellowstone National Park. Ecol Monogr 67:411–433

    Article  Google Scholar 

  • Turner MG, Romme WH, Tinker DB (2003) Surprises and lessons from the 1988 Yellowstone fires. Front Ecol Environ 1:351–358

    Article  Google Scholar 

  • Uchiyama K, Goto S, Tsuda Y, Takahashi Y, Ide Y (2006) Genetic diversity and genetic structure of adult and buried seed populations of Betula maximowicziana in mixed and post-fire stands. Forest Ecol Manag 237:119–126

    Article  Google Scholar 

  • Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICRO-CHECKER: Software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538

    Article  CAS  Google Scholar 

  • Weir BS, Clark Cockerham C (1984) Estimating f-statistics for the analysis of population structure. Evolution 38:1358–1370

    CAS  PubMed  Google Scholar 

  • Widmer A, Lexer C (2001) Glacial refugia: sanctuaries for allelic richness, but not for gene diversity. Trends Ecol Evol 16:267–269

    CAS  Article  PubMed  Google Scholar 

  • Wilkin KM, Ackerly DD, Stephens SL (2016) Climate change refugia, fire ecology and management. Forests 7:77. https://doi.org/10.3390/f7040077

    Article  Google Scholar 

  • Wilson GA, Rannala B (2003) Bayesian inference of recent migration rates using multilocus genotypes. Genetics 163:1177–1191

    PubMed  PubMed Central  Google Scholar 

  • Wright SJ, Trakhtenbrot AG, Bohrer G, Detto M, Katul GG, Horvitz N, Muller-Landau HC, Landau FA, Nathan R (2008) Understanding strategies for seed dispersal by wind under contrasting atmospheric conditions. Proc Natl Acad Sci USA 105:19084–19089

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Xu H, Tremblay F, Bergeron Y (2013) Development and multiplexed amplification of SSR Markers for Thuja occidentalis (Cupressaceae) using shotgun pyrosequencing. Appl Plant Sci 1:1200427

    Article  Google Scholar 

Download references

Acknowledgements

This work is part of the PhD thesis of H. X. We would like to acknowledge M. H. Longpré and D. Charron for logistical support and Y. Zhou for assistance in the lab. Special thanks go to the industrial supervisors from the company Tembec. This research was supported by an Industrial Innovation Doctoral Scholarship from the Natural Sciences and Engineering Research Council of Canada (NSERC), a BMP innovation doctoral scholarship from the Fonds de recherché du Québec- Natures et technologies (FQRNT) and Tembec, and a scholarship from the Forêt d’enseignement et de recherche du lac Duparquet (FERLD) to H. X. This research was also funded by a NSERC strategic grant (STPGP 336871) to F. T.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francine Tremblay.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 226 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xu, H., Tremblay, F. & Bergeron, Y. Importance of landscape features and fire refuges on genetic diversity of Thuya occidentalis L., in boreal fire dominated landscapes. Conserv Genet 19, 1231–1241 (2018). https://doi.org/10.1007/s10592-018-1091-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-018-1091-6

Keywords

  • Boreal old growth forest
  • Conservation genetics
  • Fire-prone landscape
  • Fire refuges
  • Forest remnant
  • Fire residuals
  • Gene flow
  • Lake-islands landscape