Skip to main content

Advertisement

Log in

Analysis of genetic diversity in a peatland specialist butterfly suggests an important role for habitat quality and small habitat patches

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

Understanding effects of habitat and landscape features on genetic variation is a prerequisite for the development of habitat and landscape management strategies aimed at conserving genetic diversity. While there has been considerable research on the effects of landscape structure on the genetics of populations, a recent review identified key biases in this body of work. The majority of landscape genetic studies investigate the intervening matrix’s influence on differentiation and gene flow among populations. Although characteristics of local habitat patches may be important determinants of genetic diversity, fewer studies have examined these relationships. Here we use node- and neighbourhood-based approaches to analyze correlates of genetic diversity in the bog copper (Lycaena epixanthe), a specialist butterfly endemic to temperate Nearctic peatlands that is threatened in parts of its range. Based on 190 repeatable and polymorphic amplified fragment length polymorphism loci, we found that genetic diversity was higher in habitat patches that were smaller and surrounded by more open water. Our results indicate that valuing small peatlands and preserving the surrounding water table may be important for conservation of genetic diversity in this highly specialized species. Our study highlights the importance of variables affecting habitat quality for conservation genetics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Addo-Bediako A, Chown SL, Gaston KJ (2002) Metabolic cold adaptation in insects: a large-scale perspective. Funct Ecol 16:332–338

    Article  Google Scholar 

  • Aiken LS, West SG (1991) Multiple regression: testing and interpreting interactions. Sage Publications, London

    Google Scholar 

  • Alda F, Garcia J, Garcia JT, Suarez-Seoane S (2013) Local genetic structure on breeding grounds of a long-distance migrant passerine: the bluethroat (Luscinia svecica) in Spain. J Hered 104:36–46

    Article  PubMed  Google Scholar 

  • Bensch S, Åkesson M (2005) Ten years of AFLP in ecology and evolution: why so few animals? Mol Ecol 14:2899–2914

    Article  CAS  PubMed  Google Scholar 

  • Bonin A, Bellemain E, Bronken E, Pompanon F, Brochmann C, Taberlet P (2004) How to track and assess genotyping errors in population genetic studies. Mol Ecol 13:3261–3273

    Article  CAS  PubMed  Google Scholar 

  • Bossart JL, Antwi JB (2016) Limited erosion of genetic and species diversity from small forest patches: sacred forest groves in an Afrotropical biodiversity hotspot have high conservation value for butterflies. Biol Conserv 198:122–134

    Article  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach, 2nd edn. Springer, New York

    Google Scholar 

  • Cassie D (2006) The thermal regime of rivers: a review. Freshw Biol 51:1389–1406

    Article  Google Scholar 

  • Cech R, Tudor G (2005) Butterflies of the East Coast. Princeton University Press, Princeton

    Google Scholar 

  • Clarke A, Meudt H (2005) AFLP (amplified fragment length polymorphism) for multilocus genomic fingerprinting. Alan Wilson Centre for Ecology and Evolution, Massey University, New Zealand. http://www.clarkeresearch.org. Accessed 23 June 2017

  • Crawford LA, Desjardins S, Keyghobadi N (2011) Fine-scale genetic structure of an endangered population of the Mormon metalmark butterfly (Apodemia mormo) revealed using AFLPs. Conserv Genet 12:991–1001

    Article  Google Scholar 

  • Crawford LA, Koscinski D, Keyghobadi N (2012) A call for more transparent reporting of error rates: the quality of AFLP data in ecological and evolutionary research. Mol Ecol 21:5911–5917

    Article  PubMed  Google Scholar 

  • Crawford LA, Koscinski D, Watt KM, McNeil JN, Keyghobadi N (2013) Mating and oviposition success of a butterfly are not affected by non-lethal tissue sampling. J Insect Conserv 17:859–864

    Article  Google Scholar 

  • Curtis RJ, Brereton TM, Dennis RLH, Carbone C, Isaac NJB (2015) Butterfly abundance is determined by food availability and is mediated by species traits. J Appl Ecol 52:1676–1684

    Article  Google Scholar 

  • Deane DC, Fordham DA, He F, Bradshaw CJA (2017) Future extinction risk of wetland plants is higher from individual patch loss than total area reduction. Biol Conserv 209:27–33

    Article  Google Scholar 

  • Dennis RLH, Eales HT (1997) Patch occupancy in Coenonympha tullia (Müller, 1976) (Lepidoptera: Satyrinae): habitat quality matters as much as patch size and isolation. J Insect Conserv 1:167–176

    Article  Google Scholar 

  • Dennis RLH, Shreeve TG, Van Dyck H (2006) Habitats and resources: the need for a resource-based definition to conserve butterflies. Biodivers Conserv 15:1943–1966

    Article  Google Scholar 

  • DiLeo MF, Wagner HH (2016) A landscape ecologist’s agenda for landscape genetics. Curr Landsc Ecol Rep 1:115–126

    Article  Google Scholar 

  • Drees C, Zumstein P, Thorsten B-D, Härdtle W, Martern A, Meyer H, von Oheimb G, Assmann T (2011) Genetic erosion in habitat specialist shows need to protect large peat bogs. Conserv Genet 12:1651–1656

    Article  Google Scholar 

  • Ellwood ER, Playfair SR, Polgar CA, Primack RB (2014) Cranberry flowering times and climate change in southern Massachusetts. Int J Biometeorol 58:1693–1697

    Article  PubMed  Google Scholar 

  • Fahrig L (2015) Just a hypothesis: a reply to Hanski. J Biogeogr 42:993–994

    Article  Google Scholar 

  • Fahrig L (2017) Ecological responses to habitat fragmentation per se. Annu Rev Ecol Evol 48:1–23

    Article  Google Scholar 

  • Finger A, Schmitt T, Zachos FE, Meyer m, Assmann T, Habel JC (2009) The genetic status of the violet copper Lycaena helle – a relict of the cold past in times of global warming. Ecography 32:382–390

    Article  Google Scholar 

  • Fischer J, Lindenmayer DB (2002) Small patches can be valuable for biodiversity conservation: two case studies on birds in southeastern Australia. Biol Conserv 106:129–136

    Article  Google Scholar 

  • Fleishman E, Ray C, Sjögren-Gulve P, Boggs CL, Murphy DD (2002) Assessing the roles of patch quality, area, and isolation in predicting metapopulation dynamics. Conserv Biol 16:706–716

    Article  Google Scholar 

  • Frankham R (1996) Relationship of genetic variation to population size in wildlife. Conserv Biol 10:1500–1508

    Article  Google Scholar 

  • Gradish AE, Keyghobadi N, Otis GW (2015) Population genetic structure and genetic diversity of the threatened White Mountain arctic butterfly (Oeneis Melissa semidea). Conserv Genet 16:1253–1264

    Article  Google Scholar 

  • Grundel R, Pavlovic NB (2007) Response of bird species densities to habitat structure and fire history along a Midwestern open-forest gradient. Condor 109:734–749

    Article  Google Scholar 

  • Habel JC, Finger A, Schmitt T, Nève G (2010) Survival of the endangered butterfly Lycaena helle in a fragmented environment: genetic analyses over 15 years. J Zool Syst Evol Res 49:25–31

    Article  Google Scholar 

  • Hanski I (2015) Habitat fragmentation and species richness. J Biogeogr 42:989–993

    Article  Google Scholar 

  • Hanski I, Moilanen A, Pakkala T, Kuussaari M (1996) The quantitative incidence function model and persistence of an endangered butterfly metapopulation. Cons Biol 10:578–590

    Article  Google Scholar 

  • Hanski I, Schulz T, Wong SC, Ahola V, Ruokolainen A, Ojanen SP (2017) Ecological and genetic basis of metapopulation persistence of the glanville fritillary butterfly in fragmented landscapes. Nat Commun 8:14504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herrmann D, Poncet BN, Manel S, Rioux D, Gielly L, Taberlet P, Gugerli F (2010) Selection criteria for scoring amplified fragment length polymorphism (AFLPs) positively affect the reliability of population genetic parameter estimates. Genome 53:302–310

    Article  CAS  PubMed  Google Scholar 

  • Holderegger R, Wagner HH (2008) Landscape genetics. Bioscience 58:199–207

    Article  Google Scholar 

  • Johnson CW (1985) Bogs of the northeast. University Press of New England, Hanover

    Google Scholar 

  • Keyghobadi N (2007) The genetic implications of habitat fragmentation for animals. Can J Zool 85:1049–1064

    Article  Google Scholar 

  • Keyghobadi N, Roland J, Strobeck C (2005) Genetic differentiation and gene flow among populations of the alpine butterfly, Parnassius smintheus, vary with landscape connectivity. Mol Ecol 14:1897–1909

    Article  CAS  PubMed  Google Scholar 

  • Keyghobadi N, Crawford L, Maxwell S (2009) Successful analysis of AFLPs from non-lethally sampled wing tissues in butterflies. Conserv Genet 10:2021–2024

    Article  CAS  Google Scholar 

  • Koscinski D, Crawford LA, Keller HA, Keyghobadi N (2011) Effects of different methods of non-lethal tissue sampling on butterflies. Ecol Entomol 36:301–308

    Article  Google Scholar 

  • Krauss J, Steffan-Dewenter I, Tscharntke T (2004) Landscape occupancy and local population size depends on host plant distribution in the butterfly Cupido minimus. Biol Conserv 120:355–361

    Article  Google Scholar 

  • Layberry RA, Hall PW, Lafontaine JD (1998) The butterflies of Canada. University of Toronto Press, Toronto

    Book  Google Scholar 

  • Leidner AK, Haddad NM (2010) Natural, not urban, barriers define population structure for a coastal endemic butterfly. Conserv Genet 11:2311–2320

    Article  Google Scholar 

  • Lynch M, Milligan BG (1994) Analysis of population genetic structure with RAPD markers. Mol Ecol 3:91–99

    Article  CAS  PubMed  Google Scholar 

  • McGarigal K, Cushman SA, Neel MC, Ene E (2002) FRAGSTATS: Spatial pattern analysis program for categorical maps. http://www.umass.edu/landeco/research/fragstats/fragstats.html. Accessed 23 June 2017

  • McKee AM, Maerz JC, Smith LL, Glenn TC (2017) Habitat predictors of genetic diversity for two sympatric wetland-breeding amphibian species. Ecol Evol 7:6271–6283

    Article  PubMed  PubMed Central  Google Scholar 

  • Millette K, Keyghobadi N (2015) The relative influence of habitat amount and configuration on genetic structure across multiple spatial scales. Ecol Evol 5:73–86

    Article  PubMed  Google Scholar 

  • Milot E, Weimerskirch H, Duchesne P, Bernatchez L (2007) Surviving with low genetic diversity: the case of albatrosses. Proc R Soc B 274:779–787

    Article  CAS  PubMed  Google Scholar 

  • Moilanen A, Hanski I (1998) Metapopulation dynamics: effects of habitat quality and landscape structure. Ecology 79:2503–2515

    Article  Google Scholar 

  • Murphy MA, Dezzani R, Pilliod DS, Storfer A (2010) Landscape genetics of high mountain frog metapopulations. Mol Ecol 19:3634–3649

    Article  PubMed  Google Scholar 

  • NatureServe (2017) NatureServe Explorer: an online encyclopedia of life. NatureServe. http://www.natureserve.org/explorer. Accessed 23 June 2017

  • Nève G, Barascud B, Descimon H, Baguette M (2008) Gene flow rise with habitat fragmentation in the bog fritillary butterfly (Lepidoptera: Nymphalidae). BMC Evol Biol 8:84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Opler PA, Malikul V (1992) Eastern butterflies. Peterson field guide. Houghton Mifflin Company, Boston

    Google Scholar 

  • Paradis E, Claude J, Strimmer K (2004) APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20:289–290

    Article  CAS  PubMed  Google Scholar 

  • Pitra C, Suárez-Seoane S, Martín CA, Streich W-J, Alonso JC (2011) Linking habitat quality with genetic diversity: a lesson from great bustards in Spain. Eur J Wildlife Res 57:411–419

    Article  Google Scholar 

  • Porlier M, Bélisle M, Garant D (2009) Non-random distribution of individual genetic diversity along an environmental gradient. Philos Trans R Soc B 364:1543–1554

    Article  Google Scholar 

  • Ranius T, Nilsson SG, Franzén M (2011) How frequent is metapopulation structure among butterflies in grasslands? Occurrence patterns in a forest-dominated landscape in southern Sweden. Écoscience 18:138–144

    Article  Google Scholar 

  • Rasic G, Keyghobadi N (2012) From broadscale patterns to fine-scale processes: habitat structure influences genetic differentiation in the pitcher plant midge across multiple spatial scales. Mol Ecol 21:223–236

    Article  PubMed  Google Scholar 

  • Reed DH, Frankham R (2003) The correlation between population fitness and genetic diversity. Conserv Biol 17:230–237

    Article  Google Scholar 

  • Saccheri I, Kuussaari M, Kankare M, Vikman P, Fortelius W, Hanski I (1998) Inbreeding and extinction in a butterfly metapopulation. Nature 392:491–494

    Article  CAS  Google Scholar 

  • Spitzer K, Danks HV (2006) Insect biodiversity of boreal peat bogs. Annu Rev Entomol 51:137–161

    Article  CAS  PubMed  Google Scholar 

  • Storfer A, Murphy MA, Evans JS, Goldberg CS, Robinson S, Spear SF, Dezzani R, Delmelle E, Vierling L, Waits LP (2007) Putting the ‘landscape’ in landscape genetics. Heredity 98:128–142

    Article  CAS  PubMed  Google Scholar 

  • Storfer A, Murphy MA, Spear SF, Holderegger R, Waits LP (2010) Landscape genetics: where are we now? Mol Ecol 19:3496–3514

    Article  PubMed  Google Scholar 

  • Struebig MJ, Kingston T, Petit EJ, Le Comber SC, Zubaid A, Mohd-Adnan A, Rossiter SJ (2011) Parallel declines in species and genetic diversity in tropical forest fragments. Ecol Lett 14:582–590

    Article  PubMed  Google Scholar 

  • Swengel AB, Swengel SR (2011) High and dry or sunk and dunked: lessons for tallgrass prairies from quaking bogs. J Insect Conserv 15:165–178

    Article  Google Scholar 

  • Thomas JA, Bourn NAD, Clarke RT, Stewart KE, Simcox DJ, Pearman GS, Curtis R, Goodger B (2001) The quality and isolation of habitat patches both determine where butterflies persist in fragmented landscapes. Proc R Soc B 268:1791–1796

    Article  CAS  PubMed  Google Scholar 

  • Transeau EN (1903) On the geographic distribution and ecological relations of the bog plant societies of northern North America. Bot Gaz 36:401–420

    Article  Google Scholar 

  • Turlure C, Van Dyck H, Schtickzelle N, Baguette M (2009) Resource-based habitat definition, niche overlap and conservation of two sympatric glacial relict butterflies. Oikos 118:950–960

    Article  Google Scholar 

  • Turlure C, Choutt J, Baguette M, Van Dyck H (2010a) Microclimate buffering and resource-based habitat in a glacial relict butterfly: significance for conservation under climate change. Glob Change Biol 16:1883–1893

    Article  Google Scholar 

  • Turlure C, Choutt J, Van Dyck H, Baguette M, Schtickzelle N (2010b) Functional habitat area as a reliable proxy for population size: case study using two butterfly species of conservation concern. J Insect Conserv 14:379–388

    Article  Google Scholar 

  • van Sway CA, Warren MS, Loïs G (2006) Biotope use and trends of European butterflies. J Insect Conserv 10:189–209

    Article  Google Scholar 

  • Vandewoestijne S, Baguette M (2004) Genetic population structure of the vulnerable bog fritillary butterfly. Hereditas 141:199–206

    Article  CAS  PubMed  Google Scholar 

  • Vandewoestijne S, Schtickzelle N, Baguette M (2008) Positive correlation between genetic diversity and fitness in a large, well-connected metapopulation. BMC Biol 6:46

    Article  PubMed  PubMed Central  Google Scholar 

  • Vekemans X, Beauwens T, Lemaire M, Rodán-Ruiz I (2002) Data from amplified fragment length polymorphism (AFLP) markers show indication of size homoplasy and of a relationship between degree of homoplasy and fragment size. Mol Ecol 11:139–151

    Article  CAS  PubMed  Google Scholar 

  • Vergeer P, Rengelink R, Copal A, Ouborg NJ (2003) The interacting effects of genetic variation, habitat quality and population size on performance of Succisa pratensis. J Ecol 91:18–26

    Article  CAS  Google Scholar 

  • Wagner HH, Fortin MJ (2013) A conceptual framework for the spatial analysis of landscape genetic data. Conserv Gent 14:253–261

    Article  Google Scholar 

  • Warton DI, Hui FKC (2011) The arcsine is asinine: the analysis of proportions in ecology. Ecology 92:3–10

    Article  PubMed  Google Scholar 

  • Whitlock R, Hipperson H, Mannarelli M, Butlin RK, Burke T (2008) An objective, rapid, and reproducible method for scoring AFLP peak-height data that minimizes genotyping error. Mol Ecol Res 8:725–735

    Article  CAS  Google Scholar 

  • Wilson PJ, Provan J (2003) Effect of habitat fragmentation on levels and patterns of genetic diversity in natural populations of the peat moss Polytrichum commune. Proc R Soc B 270:881–886

    Article  PubMed  Google Scholar 

  • Wright DM (1983) Life history and morphology of the immature stages of the Bog Copper butterfly Lycaena epixanthe (Bsd. & Le C.) (Lepidoptera: Lycaenidae). J Res Lepidoptera 22:47–100

    Google Scholar 

  • Zhang H, Hare MP (2012) Identifying and reducing AFLP genotyping error: an example of tradeoffs when comparing population structure in broadcast spawning versus brooding oysters. Heredity 108:616–625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhivotovsky L (1999) Estimating population structure in diploids with multilocus dominant DNA markers. Mol Ecol 8:907–913

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank W. Chick, J. Donald, C. Irvine, H. Keller, K. Schreiber and K. Weaver for their help with field and/or lab work. We also acknowledge J. Hillyer, and J. Dromboskie, J. Peters and R. Stronks (Algonquin Provincial Park) for providing GIS data and information on Lycaena epixanthe distribution, respectively. Permission to conduct research in Algonquin Provincial Park and logistical support was provided by the Ontario Ministry of Natural Resources and Harkness Laboratory for Fisheries Research. This work was supported by the Canada Research Chairs Program, the Natural Sciences and Engineering Research Council of Canada, The Xerces Society for Invertebrate Conservation and Western University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lindsay A. Crawford.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online Resources (DOCX 69 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Crawford, L.A., Keyghobadi, N. Analysis of genetic diversity in a peatland specialist butterfly suggests an important role for habitat quality and small habitat patches. Conserv Genet 19, 1109–1121 (2018). https://doi.org/10.1007/s10592-018-1082-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-018-1082-7

Keywords

Navigation