Genomic data indicate ubiquitous evolutionary distinctiveness among populations of California metalmark butterflies

Abstract

Conservation geneticists have argued that evolutionarily significant units (ESUs) must be both genetically distinct and adaptively significant to be recognized for conservation protection. High-throughput DNA approaches can greatly increase the power to identify genetic distinctiveness, even if inferring adaptive significance remains a challenge. Here we present the first genomic evaluation of Lange’s metalmark, Apodemia mormo langei (Lepidoptera: Riodinidae), a U.S. federally endangered subspecies restricted to sand dune habitats in a single National Wildlife Refuge in California. Previous work based on very few genetic markers detected little genetic distinction for Lange’s metalmark. We use several thousand genome-wide single nucleotide polymorphisms to characterize the population structure of the A. mormo complex across California and determine if Lange’s metalmark qualifies as an ESU. We found that Lange’s metalmark is genetically identifiable, but is no more distinct than many other isolated populations across the study area. It remains unclear whether this genetic variation is adaptive, and so conservation efforts would benefit from more ecological characterization to determine conservation priorities.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

References

  1. Allendorf FW (2017) Genetics and the conservation of natural populations: allozymes to genomes. Mol Ecol 26:420–430

    CAS  Article  PubMed  Google Scholar 

  2. Allendorf FW, Hohenlohe PA, Luikart G (2010) Genomics and the future of conservation genetics. Nat Rev Genet 11:697–709. https://doi.org/10.1038/nrg2844

    CAS  Article  PubMed  Google Scholar 

  3. Bennett JR et al (2014) Balancing phylogenetic diversity and species numbers in conservation prioritization, using a case study of threatened species in New Zealand. Biol Conserv 174:47–54. https://doi.org/10.1016/j.biocon.2014.03.013

    Article  Google Scholar 

  4. Bouckaert RR, Heled J (2014) DensiTree 2: seeing trees through the forest. bioRxiv. https://doi.org/10.1101/012401

    Article  Google Scholar 

  5. Bouckaert R et al (2014) BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Comput Biol 10:e1003537. https://doi.org/10.1371/journal.pcbi.1003537

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. Bowen BW (1999) What is wrong with ESUs? the gap between evolutionary theory and conservation principles. J Shellfish Res 17:1355–1358

    Google Scholar 

  7. Bryant D, Bouckaert R, Felsenstein J, Rosenberg NA, RoyChoudhury A (2012) Inferring species trees directly from biallelic genetic markers: bypassing gene trees in a full coalescent analysis. Mol Biol Evol 29:1917–1932. https://doi.org/10.1093/molbev/mss086

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. Carolan MS (2008) The politics in environmental science: the Endangered Species Act and the Preble’s mouse controversy. Environ Politics 17:449–465. https://doi.org/10.1080/09644010802055683

    Article  Google Scholar 

  9. Catchen JM, Amores A, Hohenlohe P, Cresko W, Postlethwait JH (2011) Stacks: building and genotyping loci de novo from short-read sequences. G3 (Bethesda) 1:171–182 https://doi.org/10.1534/g3.111.000240

    CAS  Article  Google Scholar 

  10. COSEWIC (2012) Guidelines for Recognizing Designatable Units; Committee on the Status of Endangered Wildlife in Canada. http://www.cosewic.gc.ca/default.asp?lang=En&n=DD31EAEE-1. Accessed 15 Dec 2017

  11. Crandall KA, Bininda-Emonds ORP, Mace GM, Wayne RK (2000) Considering evolutionary processes in conservation biology. Trends Ecol Evol 15:290–295

    CAS  Article  PubMed  Google Scholar 

  12. Crawford LA, Desjardins S, Keyghobadi N (2011) Fine-scale genetic structure of an endangered population of the Mormon metalmark butterfly (Apodemia mormo) revealed using AFLPs. Conserv Genet 12:991–1001. https://doi.org/10.1007/s10592-011-0202-4)

    Article  Google Scholar 

  13. Cullingham CI, Cooke JE, Coltman DW (2014) Cross-species outlier detection reveals different evolutionary pressures between sister species. New Phytol 204:215–229. https://doi.org/10.1111/nph.12896

    Article  PubMed  PubMed Central  Google Scholar 

  14. DaCosta JM, Sorenson MD (2016) ddRAD-seq phylogenetics based on nucleotide, indel, and presence-absence polymorphisms: analyses of two avian genera with contrasting histories. Mol Phylogenet Evol 94:122–135. https://doi.org/10.1016/j.ympev.2015.07.026

    CAS  Article  PubMed  Google Scholar 

  15. Danecek P et al (2011) The variant call format and VCFtools. Bioinformatics 27:2156–2158. https://doi.org/10.1093/bioinformatics/btr330

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. Davenport K (2004) A concise update of the information provided in The Butterflies of Southern California (1973) by Thomas C Emmel and John F Emmel. Taxon Rep Int Lepidoptera Surv 4:1–23

    Google Scholar 

  17. de Guia APO, Saitoh T (2006) The gap between the concept and definitions in the evolutionarily significant unit: the need to integrate neutral genetic variation and adaptive variation. Ecol Res 22:604–612. https://doi.org/10.1007/s11284-006-0059-z

    Article  Google Scholar 

  18. Donaldson MR, Burnett NJ, Braun DC, Suski CD, Hinch SG, Cooke SJ, Kerr JT (2016) Taxonomic bias and international biodiversity conservation research. Facets 1:105–113. https://doi.org/10.1139/facets-2016-0011

    Article  Google Scholar 

  19. Doremus H (2004) The purposes effects and future of the Endangered Species Act’s best available science mandate. Environmental Law 34:397–450

    Google Scholar 

  20. Dupuis JR, Sperling FAH (2016) Speciation, hybridization, and conservation quanderies: what are we protecting anyway? News Lepidopterist Soc 58:202–204

    Google Scholar 

  21. Dupuis JR et al (2017) Genome-wide SNPs resolve phylogenetic relationships in the North American spruce budworm (Choristoneura fumiferana) species complex. Mol Phylogenet Evol 111:158–168. https://doi.org/10.1016/j.ympev.2017.04.001

    CAS  Article  PubMed  Google Scholar 

  22. ESA (1973) US Endangered Species Act of 1973 as amended, Pub. L. No. 93–205, 87 Stat. 884 (Dec. 28, 1973). http://www.fws.gov/endangered/esa-library/pdf/ESAall.pdf. Accessed 15 Dec 2017

  23. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Fraser DJ, Bernatchez L (2001) Adaptive evolutionary conservation: towards a unified concept for defining conservation units. Mol Ecol 10:2741–2752

    CAS  Article  PubMed  Google Scholar 

  26. Funk WC, McKay JK, Hohenlohe PA, Allendorf FW (2012) Harnessing genomics for delineating conservation units. Trends Ecol Evol 27:489–496. https://doi.org/10.1016/j.tree.2012.05.012

    Article  PubMed  PubMed Central  Google Scholar 

  27. Garner BA et al (2016) Genomics in conservation: case studies and bridging the gap between data and application. Trends Ecol Evol 31:81–83. https://doi.org/10.1016/j.tree.2015.10.009

    Article  PubMed  Google Scholar 

  28. Goudet J (2005) HIERFSTAT, a package for R to compute and test hierarchical F-statistics. Mol Ecol Notes 5:184–186. https://doi.org/10.1111/j.1471-8278

    Article  Google Scholar 

  29. Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321. https://doi.org/10.1093/sysbio/syq010

    CAS  Article  PubMed  Google Scholar 

  30. Hey J, Waples RS, Arnold ML, Butlin RK, Harrison RG (2003) Understanding and confronting species uncertainty in biology and conservation. Trends Ecol Evol 18:597–603. https://doi.org/10.1016/j.tree.2003.08.014

    Article  Google Scholar 

  31. Jensen JL, Bohonak AJ, Kelley ST (2005) Isolation by distance, web service. BMC Genet 6:13. https://doi.org/10.1186/1471-2156-6-13

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. Johnson JJ, Longcore T, Clause A, Pratt G, Dunn J, Osborne K (2007) Propogation handbook for Lange’s metalmark butterfly, Apodemia mormo langei, 1st edn. The Urban Wildlands Group, Los Angeles

    Google Scholar 

  33. Johnson JJ, Wilson T, Taylor C, Xia Y, Jones J, Osborne K, Longcore T (2016) Captive rearing of Lange’s metalmark butterfly, 2011–2015, report to the United States Fish and Wildlife Service, CVPIA Habitat Restoration Program. Agreement No.: F11AP00168, Los Angeles

  34. Jombart T (2008) adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24:1403–1405. https://doi.org/10.1093/bioinformatics/btn129

    CAS  Article  PubMed  Google Scholar 

  35. Jombart T, Ahmed I (2011) adegenet 1.3-1: new tools for the analysis of genome-wide SNP data. Bioinformatics 27:3070–3071. https://doi.org/10.1093/bioinformatics/btr521

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. Jombart T, Devillard S, Balloux F (2010) Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet 11:94. https://doi.org/10.1186/1471-2156-11-94

    Article  PubMed  PubMed Central  Google Scholar 

  37. Jost LOU (2008) GSTand its relatives do not measure differentiation. Mol Ecol 17:4015–4026. https://doi.org/10.1111/j.1365-294X.2008.03887.x

    Article  PubMed  Google Scholar 

  38. Jost L (2009) D vs. Gst: response to Heller and Siegismund (2009) and Ryman and Leimar (2009). Mol Ecol 18:2088–2091

    Article  Google Scholar 

  39. Kalinowski ST (2004) Counting alleles with rarefaction: private alleles and hierarchical sampling designs. Conserv Genet 5:539–543

    CAS  Article  Google Scholar 

  40. Kopelman NM, Mayzel J, Jakobsson M, Rosenberg NA, Mayrose I (2015) Clumpak: a program for identifying clustering modes and packaging population structure inferences across K. Mol Ecol Resour 15:1179–1191. https://doi.org/10.1111/1755-0998.12387

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. Latour B (1987) Science in action: how to follow scientists and engineers through society. Harvard University Press, Cambridge

    Google Scholar 

  42. Leaché AD, Banbury BL, Felsenstein J, Nieto-Montes de Oca A, Stamatakis A (2015) Short tree, long tree, right tree, wrong tree: new acquisition bias corrections for inferring SNP phylogenies. Syst Biol 64:1032–1047. https://doi.org/10.5061/dryad.t9r3g

    Article  PubMed  PubMed Central  Google Scholar 

  43. Lemmon EM, Lemmon AR (2013) High-throughput genomic data in systematics and phylogenetics. Annu Rev Ecol Evol Syst 44:99–121. https://doi.org/10.1146/annurev-ecolsys-110512-135822

    Article  Google Scholar 

  44. Lischer HE, Excoffier L (2012) PGDSpider: an automated data conversion tool for connecting population genetics and genomics programs. Bioinformatics 28:298–299. https://doi.org/10.1093/bioinformatics/btr642

    CAS  Article  PubMed  Google Scholar 

  45. Luck GW, Daily GC, Ehrlich PR (2003) Population diversity and ecosystem services. Trends Ecol Evol 18:331–336. https://doi.org/10.1016/s0169-5347(03)00100-9

    Article  Google Scholar 

  46. Luikart G, England PR, Tallmon D, Jordan S, Taberlet P (2003) The power and promise of population genomics: from genotyping to genome typing. Nat Rev Genet 4:981–994. https://doi.org/10.1038/nrg1226

    CAS  Article  PubMed  Google Scholar 

  47. Mace GM (2004) The role of taxonomy in species conservation. Philos Trans R Soc Lond B 359:711–719. https://doi.org/10.1098/rstb.2003.1454

    Article  Google Scholar 

  48. Mattoni RHT (1990) The endangered El Segundo blue butterfly. J Res Lepidoptera 29:277–304

    Google Scholar 

  49. Mee JA, Bernatchez L, Reist JD, Rogers SM, Taylor EB (2015) Identifying designatable units for intraspecific conservation prioritization: a hierarchical approach applied to the lake whitefish species complex (Coregonus spp.). Evol Appl 8:423–441. https://doi.org/10.1111/eva.12247

    Article  PubMed  PubMed Central  Google Scholar 

  50. Meirmans PG, Van Tienderen PH (2004) genotype and genodive: two programs for the analysis of genetic diversity of asexual organisms. Mol Ecol Notes 4:792–794. https://doi.org/10.1111/j.1471-8286.2004.00770.x

    Article  Google Scholar 

  51. Michalakis Y, Excoffier L (1996) A generic estimation of population subdivision using distances between alleles with special reference for microsatellite loci. Genetics 142:1061–1064

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Minh BQ, Nguyen MA, von Haeseler A (2013) Ultrafast approximation for phylogenetic bootstrap. Mol Biol Evol 30:1188–1195. https://doi.org/10.1093/molbev/mst024

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  53. Moore JS et al (2014) Conservation genomics of anadromous Atlantic salmon across its North American range: outlier loci identify the same patterns of population structure as neutral loci. Mol Ecol 23:5680–5697. https://doi.org/10.1111/mec.12972

    CAS  Article  PubMed  Google Scholar 

  54. Moritz C (1994) Defining “evolutionarily significant units” for conservation. Trends Ecol Evol 9:373–375

    CAS  Article  PubMed  Google Scholar 

  55. Moritz C, Lavery S, Slade R (1995) Using allele frequency and phylogeny to define units for conservation and management. In: Nielsen JL, Powers GA (eds) Evolution and the aquatic ecosystem: defining unique units in population conservation. American Fisheries Society, Maryland, pp 249–262

    Google Scholar 

  56. Narum SR, Hess JE (2011) Comparison of F(ST) outlier tests for SNP loci under selection. Mol Ecol Resour 11(Suppl 1):184–194 https://doi.org/10.1111/j.1755-0998.2011.02987.x

    Article  PubMed  Google Scholar 

  57. Narum SR, Buerkle CA, Davey JW, Miller MR, Hohenlohe PA (2013) Genotyping-by-sequencing in ecological and conservation genomics. Mol Ecol 22:2841–2847. https://doi.org/10.1111/mec.12350

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  58. Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ (2015) IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 32:268–274. https://doi.org/10.1093/molbev/msu300

    CAS  Article  PubMed  Google Scholar 

  59. Oksanen J et al (2017) vegan: community ecology package. R package version 2.4-4. https://cran.r-project.org/package=vegan. Accessed 4 Oct 2017

  60. Opler PA, Powell JA (1961) Taxonomic and distributional studies on the Western components of the Apodemia mormo complex (Riodinidae). J Lepidopterists’ Soc 15:145–171

    Google Scholar 

  61. Palsbøll PJ, Berube M, Allendorf FW (2007) Identification of management units using population genetic data. Trends Ecol Evol 22:11–16. https://doi.org/10.1016/j.tree.2006.09.003

    Article  PubMed  Google Scholar 

  62. Pearse DE (2016) Saving the spandrels? Adaptive genomic variation in conservation and fisheries management. J Fish Biol 89:2697–2716. https://doi.org/10.1111/jfb.13168

    CAS  Article  PubMed  Google Scholar 

  63. Pelham JP (2008) A catalogue of the butterflies of the United States and Canada, with a complete bibliography of the descriptive and systematic literature. J Res Lepidoptera 40:1–672

    Google Scholar 

  64. Poland JA, Brown PJ, Sorrells ME, Jannink JL (2012) Development of high-density genetic maps for barley and wheat using a novel two-enzyme genotyping-by-sequencing approach. PLoS ONE 7:e32253. https://doi.org/10.1371/journal.pone.0032253

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  65. Pratt GF, Ballmer GR (1991) Three biotypes of Apodemia mormo (Riodinidae) in the Mojave Desert. J Lepidopterists’ Soc 45:46–57

    Google Scholar 

  66. Pratt GF, Emmel JF, Bernard G (2011) The Buckwheat metalmarks. Am Butterflies Summer/Fall/Winter 2011:4–31

  67. Pritchard JK, Wen X (2004) Documentation for structure software: version 2. University of Chicago Press, Chicago

    Google Scholar 

  68. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Proshek B, Crawford LA, Davis CS, Desjardins S, Henderson AE, Sperling FAH (2013) Apodemia mormo in Canada: population genetic data support prior conservation ranking. J Insect Conserv 17:155–170. https://doi.org/10.1007/s10841-012-9494-z

    Article  Google Scholar 

  70. Proshek B, Dupuis JR, Engberg A, Davenport K, Opler PA, Powell JA, Sperling FA (2015) Genetic evaluation of the evolutionary distinctness of a federally endangered butterfly, Lange’s Metalmark. BMC Evol Biol 15:73. https://doi.org/10.1186/s12862-015-0354-9

    Article  PubMed  PubMed Central  Google Scholar 

  71. Puechmaille SJ (2016) The program structure does not reliably recover the correct population structure when sampling is uneven: subsampling and new estimators alleviate the problem. Mol Ecol Resour 16:608–627. https://doi.org/10.1111/1755-0998.12512

    Article  PubMed  Google Scholar 

  72. R Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  73. Rambaut A, Drummond AJ (2010) FigTree v1.4.2. Institute of Evolutionary Biology, University of Edinburgh. http://www.treebioedacuk/software/figtree. Accessed 10 Jan 2017

  74. Rambaut A, Suchard MA, Xie D, Drummond AJ (2014) Tracer v1.6, available from http://beast.bio.ed.ac.uk/Tracer. Accessed 10 Jan 2017

  75. Reveal JL (2007) A new variety of Eriogonum nudum (Polygonaceae) from California. Phytologia 89:287–289

    Google Scholar 

  76. Richmond OMW, Kelly D, Longcore T (2015) Lange’s Metalmark butterfly threat assessment and ranking of potential management alternatives: final report, Sacramento

  77. Rokas A, Abbot P (2009) Harnessing genomics for evolutionary insights. Trends Ecol Evol 24:192–200. https://doi.org/10.1016/j.tree.2008.11.004

    Article  PubMed  Google Scholar 

  78. Rousset F (1997) Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145:1219–1228

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Ryder OA (1986) Species conservation and systematics: the dilemma of subspecies. Trends Ecol Evol 1:9–10

    Article  Google Scholar 

  80. Sboner A, Mu XJ, Greebaum D, Auerbach RK, Gerstein MB (2011) The real cost of sequencing: higher than you think! Genome Biol 12:125

    Article  PubMed  PubMed Central  Google Scholar 

  81. Scott JA (1986) The butterflies of North America: a natural history and field guide. Stanford University Press, Stanford

    Google Scholar 

  82. Shafer AB et al (2015) Genomics and the challenging translation into conservation practice. Trends Ecol Evol 30:78–87. https://doi.org/10.1016/j.tree.2014.11.009

    Article  PubMed  Google Scholar 

  83. Shafer AB et al (2016) Reply to Garner et al. Trends Ecol Evol 31:83–84. https://doi.org/10.1016/j.tree.2015.11.010

    Article  PubMed  Google Scholar 

  84. Sonah H et al (2013) An improved genotyping by sequencing (GBS) approach offering increased versatility and efficiency of SNP discovery and genotyping. PLoS ONE 8:e54603. https://doi.org/10.1371/journal.pone.0054603

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  85. Stajich JE et al (2002) The Bioperl toolkit: Perl modules for the life sciences. Genome Res 12:1611–1618

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  86. Taylor E, Darveau C-A, Schulte P (2013) Setting conservation priorities in a widespread species: phylogeographic and physiological variation in the lake chub, Couesius plumbeus (Pisces: Cyprinidae). Diversity 5:149–165. https://doi.org/10.3390/d5020149

    Article  Google Scholar 

  87. The Inkscape Team (2017) Inkscape v0.91. https://inkscape.org/. Accessed 10 Mar 2017

  88. USFWS (1976) United States Fish and Wildlife Service: determination that six species of butterflies are endangered species. Fed Regist 41:22041–22044

    Google Scholar 

  89. USFWS (1984) United States Fish and Wildlife Service: revised recovery plan for three endangered species endemic to the Antioch Dunes, California (Lange’s metalmark butterfly, Contra Costa Wallflower, and Antioch Dunes Evening Primrose). US Fish and Wildlife Service, Portland

  90. USFWS (2008) United States Fish and Wildlife Service: species account: Lange’s Metalmark butterfly, Apodemia mormo langei

  91. USFWS, NMFS (1996) US Fish and Wildlife Service and National Marine Fisheries Service: policy regarding the recognition of distinct vertebrate population segments under the Endangered Species Act. Fed Regist 61:4721–4725

    Google Scholar 

  92. Vähä JP, Erkinaro J, Niemela E, Primmer CR (2007) Life-history and habitat features influence the within-river genetic structure of Atlantic salmon. Mol Ecol 16:2638–2654. https://doi.org/10.1111/j.1365-294X.2007.03329.x

    Article  PubMed  Google Scholar 

  93. Vogler AP, Desalle R (1994) Diagnosing units of conservation management. Conserv Biol 8:354–363

    Article  Google Scholar 

  94. Waples RS (1991) Pacific Salmon, Oncorhynchus spp., and the definition of “species” under the Endangered Species Act. Mar Fish Rev 53:11–22

    Google Scholar 

  95. Waples RS (1995) Evolutionary significant units and the conservation of biological diversity under the Endangered Species Act. In: Nielsen JL, Powers GA (eds) Evolution and the aquatic ecosystem: defining unique units in population conservation. American Fisheries Society, Maryland, pp 8–27

    Google Scholar 

  96. Waples RS, Nammack M, Cochrane JF, Hutchings JA (2013) A tale of two acts: endangered species listing practices in Canada and the United States. Bioscience 63:723–734. https://doi.org/10.1525/bio.2013.63.9.8

    Article  Google Scholar 

  97. Wick AA, Pruss S, Spence J, Erbilgin N (2014) Microhabitat use in a northern peripheral population of Apodemia mormo: factors beyond the host plant. J Lepidopterists’ Soc 68:54–60. https://doi.org/10.18473/lepi.v68i1.a8

    Article  Google Scholar 

  98. Wright S (1943) Isolation by distance. Genetics 28:114–138

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Zhulidov PA et al (2004) Simple cDNA normalization using kamchatka crab duplex-specific nuclease. Nucleic Acids Res 32:e37. https://doi.org/10.1093/nar/gnh031

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Funding was provided by a National Science and Engineering Research Council Discovery grant (RGPIN 217174) to FAHS. This research was enabled in part by support provided by WestGrid (http://www.westgrid.ca) and Compute Canada Calcul Canada (http://www.computecanada.ca). Availability of specimens of A. m. langei was made possible by funding for the captive propagation program from the U.S. Fish and Wildlife Service’s CVPIA Habitat Restoration Program. We thank Soowon Cho, John Eggers, Jerry Powell, and Dan Rubinoff for help collecting specimens, Kevin Muirhead for bioinformatic assistance, and Jim P. Brock for use of the A. m. langei photograph. We also thank Alfred Vogler and two anonymous reviewers for their insightful comments on this manuscript. Data files are available as Online Resources (STRUCTURE input: Online Resource 3, ML input: Online Resource 4, SNAPP input: Online Resource 5) and raw sequence data are available as Sequence Read Archives (National Center for Biotechnology Information) under accession SRP127676 (SRR6427150-SRR6427258, BioProject PRJNA427807). Final figures generated using Inkscape v0.91 (The Inkscape Team 2017).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Julian R. Dupuis.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dupuis, J.R., Oliver, J.C., Brunet, B.M.T. et al. Genomic data indicate ubiquitous evolutionary distinctiveness among populations of California metalmark butterflies. Conserv Genet 19, 1097–1108 (2018). https://doi.org/10.1007/s10592-018-1081-8

Download citation

Keywords

  • Evolutionarily significant unit
  • ESU
  • Conservation genetics
  • Genomics
  • Lepidoptera
  • Apodemia mormo langei