Skip to main content

Advertisement

Log in

Pollinator service affects quantity but not quality of offspring in a widespread New Zealand endemic tree species

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

Human-mediated introductions of predatory mammals to New Zealand have led to massive bird extinctions and population declines. This reduction in bird abundance could have a variety of negative effects on the plants they pollinate, and this has led to recent management efforts to eliminate predatory mammals in some areas. In this study, we utilized variation in management efforts to determine the effects of pollinator service on progeny quantity and quality of an endemic New Zealand tree species, Fuchsia excorticata. Due to its gynodioecious breeding system (separate hermaphroditic and female plants), we were able to estimate effective pollination by scoring pollen deposition on females as a proxy for pollinator service, which we used to examine the effect of pollinator service on both the quantity of fruits produced and the quality of fruits, as measured by the selfing rate of hermaphrodites. We found that increased pollinator service increased progeny quantity, with a stronger effect in females, but had no effect on the quality via selfing rates. The combined effects of pollen limitation and loss of seeds due to inbreeding depression led to hermaphrodites having an estimated 24–80% reduction in the number of offspring reaching reproductive age, even in the highly managed populations. Our results suggest management efforts can have substantial impacts on progeny quantity, but progeny quality is likely influenced by more difficult to manage population or species-specific traits such as tree size, plant sex ratio, and pollinator behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aguilar R, Quesada M, Ashworth L, Herrerias-Diego Y, Lobo J (2008) Genetic consequences of habitat fragmentation in plant populations: susceptible signals in plant traits and methodological approaches. Mol Ecol 17:5177–5188

    Article  PubMed  Google Scholar 

  • Anderson SH, Kelly D, Ladley JJ, Molloy S, Terry J (2011) Cascading effects of bird functional extinction reduce pollination and plant density. Science 331:1068–1071

    Article  PubMed  CAS  Google Scholar 

  • Anderson SH, Kelly D, Robertson AW, Ladley JJ (2016) Pollination by birds: a functional evaluation. In: Sekercioglu CH, Wenny DG, Whelan CJ (eds) Why birds matter: avian ecological function and ecosystem services. The University of Chicago Press, Chicago, pp 73–106

    Google Scholar 

  • Ashman T-L, Knight TM, Steets JA, Amarasekare P, Burd M, Campbell DR, Dudash MR, Johnston MO, Mazer SJ, Mitchell RJ, Morgan MT, Wilson WG (2004) Pollen limitation of plant reproduction: ecological and evolutionary causes and consequences. Ecology 85:2408–2421

    Article  Google Scholar 

  • Aslan CE, Zavaleta ES, Tershy B, Croll D (2013) Mutualism disruption threatens global plant biodiversity: a systematic review. PLoS ONE 8:e66993

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Baker HG (1955) Self-compatibility and establishment after “long-distance” dispersal. Evolution 9:347–349

    Google Scholar 

  • Barrett SCH (2002) The evolution of plant sexual diversity. Nat Rev Genet 3:274–284

    Article  PubMed  CAS  Google Scholar 

  • Bell RJH (2010) Is Fuchsia excorticata (Onagraceae) seed limited? MSc Dissertation, University of Canterbury

  • Blackburn TM, Cassey P, Duncan RP, Evans KL, Gaston KJ (2004) Avian extinction and mammalian introductions on oceanic islands. Science 305:1955–1958

    Article  PubMed  CAS  Google Scholar 

  • Bond WJ (1994) Do mutualisms matter? Assessing the impact of pollinator and disperser disruption on plant extinction. Philos Trans R Soc Lond Ser B 344:83–90

    Article  Google Scholar 

  • Bradbury D, Krauss SL (2013) Limited impact of fragmentation and disturbance on the mating system of tuart (Eucalyptus gomphocephala, Myrtaceae): implications for seed-source quality in ecological restoration. Aust J Bot 61:148–160

    Article  Google Scholar 

  • Brys R, Jacquemyn H (2012) Effects of human-mediated pollinator impoverishment on floral traits and mating patterns in a short-lived herb: an experimental approach. Funct Ecol 26:189–197

    Article  Google Scholar 

  • Burd M (1994) Bateman’s principle and plant reproduction—the role of pollen limitation in fruit and seed set. Bot Rev 60:83–139

    Article  Google Scholar 

  • Burrows C (1994) Fruit, seeds, birds and the forests of Banks Peninsula. N Z Natl Sci 21:87–108

    Google Scholar 

  • Castro I, Robertson AW (1997) Honeyeaters and the New Zealand forest flora: the utilisation and profitability of small flowers. N Z J Ecol 21:169–179

    Google Scholar 

  • Charlesworth B, Charlesworth D (1978) A model for the evolution of dioecy and gynodioecy. Am Nat 112:975–997

    Article  Google Scholar 

  • Clarkson BD, Kirby CL (2016) Ecological restoration in urban environments in New Zealand. Ecol Manag Restor 17:180–190

    Article  Google Scholar 

  • Craig JL, Stewart AM, Douglas ME (1981) The foraging of New Zealand honeyeaters. N Z J Zool 8:87–91

    Article  Google Scholar 

  • Cronk QC, Fuller JL (1995) Plant invaders: the threat to natural ecosystems. Chapman & Hall, London

    Google Scholar 

  • Cruzan MB (2001) Population size and fragmentation thresholds for the maintenance of genetic diversity in the herbaceous endemic Scutellaria montana (Lamiaceae). Evolution 55:1569–1580

    Article  PubMed  CAS  Google Scholar 

  • de Lange PJ, Norton DA, Courtney SP, Heenan PB, Barkla JW, Cameron EK, Hitchmough R, Townsend AJ (2009) Threatened and uncommon plants of New Zealand (2008 revision). N Z J Bot 47:61–96

    Article  Google Scholar 

  • Delph LF (1990) Sex-ratio variation in the gynodioecious shrub Hebe strictissima (Scrophulariaceae). Evolution 44:134–142

    Article  PubMed  Google Scholar 

  • Delph LF, Lively CM (1985) Pollinator visits to floral colour phases of Fuchsia excorticata. N Z J Zool 12:599–603

    Article  Google Scholar 

  • Delph LF, Lively CM (1989) The evolution of floral color-change—pollinator attraction versus physiological constraints in Fuchsia excorticata. Evolution 43:1252–1262

    Article  PubMed  Google Scholar 

  • Denslow JS (2003) Weeds in paradise: thoughts on the invasibility of tropical islands. Ann Mo Bot Gard 90:119–127

    Article  Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  • Duminil J, Fineschi S, Hampe A, Jordano P, Salvini D, Vendramin GG, Petit RJ (2007) Can population genetic structure be predicted from life-history traits? Am Nat 169:662–672

    PubMed  Google Scholar 

  • Duncan RP, Boyer AG, Blackburn TM (2013) Magnitude and variation of prehistoric bird extinctions in the Pacific. Proc Natl Acad Sci USA 110:6436–6441

    Article  PubMed  Google Scholar 

  • Eckert CG (2000) Contributions of autogamy and geitonogamy to self-fertilization in a mass-flowering, clonal plant. Ecology 81:532–542

    Article  Google Scholar 

  • Eckhart VM (1999) Sexual dimorphism in flowers and inflorescences. In: Geber M, Dawson T, Delph L (eds) Gender and sexual dimorphism in flowering plants. Springer, Berlin, pp 123–148

    Chapter  Google Scholar 

  • Fausto JA, Eckhart VM, Geber MA (2001) Reproductive assurance and the evolutionary ecology of self-pollination in Clarkia xantiana (Onagraceae). Am J Bot 88:1794–1800

    Article  PubMed  Google Scholar 

  • Feres JM, Sebbenn AM, Guidugli MC, Mestriner MA, Moraes MLT, Alzate-Marin AL (2012) Mating system parameters at hierarchical levels of fruits, individuals and populations in the Brazilian insect-pollinated tropical tree, Tabebuia roseo-alba (Bignoniaceae). Conserv Genet 13:393–405

    Article  Google Scholar 

  • Foley JA, DeFries R, Asner GP, Barford C, Bonan G, Carpenter SR, Chapin FS, Coe MT, Daily GC, Gibbs HK, Helkowski JH, Holloway T, Howard EA, Kucharik CJ, Monfreda C, Patz JA, Prentice IC, Ramankutty N, Snyder PK (2005) Global consequences of land use. Science 309:570–574

    Article  PubMed  CAS  Google Scholar 

  • Godley EJ (1955) Breeding systems in New Zealand plants I. Fuchsia. Ann Bot 19:549–559

    Article  Google Scholar 

  • Godley EJ, Berry PE (1995) The biology and systematics of Fuchsia in the South Pacific. Ann Mo Bot Gard 82:473–516

    Article  Google Scholar 

  • Hamrick JL, Godt MJW (1989) Allozyme diversity in plant species. In: Brown AHD, Clegg MT, Kahler AL, Weir BS (eds) Plant population genetics, breeding and genetic resources. Sinauer Associates, Sunderland, pp 43–63

    Google Scholar 

  • Hamrick JL, Linhart YB, Mitton JB (1979) Relationships between life history characteristics and electrophoretically detectable genetic variation in plants. Ann Rev Ecol Syst 10:173–200

    Article  Google Scholar 

  • Hargreaves AL, Weiner JL, Eckert CG (2015) High-elevation range limit of an annual herb is neither caused nor reinforced by declining pollinator service. J Ecol 103:572–584

    Article  Google Scholar 

  • Herlihy CR, Eckert CG (2002) Genetic cost of reproductive assurance in a self-fertilizing plant. Nature 416:320–323

    Article  PubMed  CAS  Google Scholar 

  • Holdaway RN, Worthy TH, Tennyson AJ (2001) A working list of breeding bird species of the New Zealand region at first human contact. N Z J Zool 28:119–187

    Article  Google Scholar 

  • Iles JM, Kelly D (2014) Restoring bird pollination of Fuchsia excorticata by mammalian predator control. N Z J Ecol 38:297–306

    Google Scholar 

  • Innes J, Lee WG, Burns B, Campbell-Hunt C, Watts C, Phipps H, Stephens T (2012) Role of predator-proof fences in restoring New Zealand’s biodiversity: a response to Scofield et al.(2011). N Z J Ecol 36:232–238

    Google Scholar 

  • Jones OR, Wang J (2010) COLONY: a program for parentage and sibship inference from multilocus genotype data. Mol Ecol Resour 10:551–555

    Article  PubMed  Google Scholar 

  • Kelly D, Ladley JJ, Robertson AW, Anderson SH, Wotton DM, Wiser SK (2010) Mutualisms with the wreckage of an avifauna: the status of bird pollination and fruit-dispersal in New Zealand. N Z J Ecol 34:66–85

    Google Scholar 

  • Knight TM, Steets JA, Vamosi JC, Mazer SJ, Burd M, Campbell DR, Dudash MR, Johnston MO, Mitchell RJ, Ashman T-L (2005) Pollen limitation of plant reproduction: pattern and process. Annu Rev Ecol Evol Syst 36:467–497

    Article  Google Scholar 

  • Koelling VA, Monnahan PJ, Kelly JK (2012) A Bayesian method for the joint estimation of outcrossing rate and inbreeding depression. Heredity 109:393–400

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Krauss SL, Phillips RD, Karron JD, Johnson SD, Roberts DG, Hopper SD (2017) Novel consequences of bird pollination for plant mating. Trends Plant Sci 22:395–410

    Article  PubMed  CAS  Google Scholar 

  • Larson BMH, Barrett SCH (2000) A comparative analysis of pollen limitation in flowering plants. Biol J Linn Soc 69:503–520

    Article  Google Scholar 

  • Lennartsson T (2002) Extinction thresholds and disrupted plant-pollinator interactions in fragmented plant populations. Ecology 83:3060–3072

    Google Scholar 

  • Lloyd DG (1992) Self-fertilization and cross-fertilization in plants. II. The selection of self-fertilization. Int J Plant Sci 153:370–380

    Article  Google Scholar 

  • Marques I, Draper D, Iriondo JM (2014) Costs and benefits of the mixed-mating system of Narcissus serotinus (Amaryllidaceae) in the conservation of small fragmented populations. Botany 92:113–122

    Article  Google Scholar 

  • McEwan WM (1978) The food of the New Zealand pigeon (Hemiphaga novaeseelandiae novaeseelandiae). N Z J Ecol 1:99–108

    Google Scholar 

  • McGlone MS (1989) The polynesian settlement of New Zealand in relation to environmental and biotic changes. N Z J Ecol 12:115–129

    Google Scholar 

  • Mitchell RJ (1993) Adaptive significance of Ipomopsis aggregata nectar production: observation and experiment in the field. Evolution 47:25–35

    Article  PubMed  Google Scholar 

  • NatureWatchNZ (2018) Banks Peninsula Tui Restoration. http://naturewatch.org.nz/projects/banks-peninsula-tui-restoration. Accessed 7 Feb 2018

  • Nybom H (2004) Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plants. Mol Ecol 13:1143–1155

    Article  PubMed  CAS  Google Scholar 

  • Ollerton J, Erenler H, Edwards M, Crockett R (2014) Extinctions of aculeate pollinators in Britain and the role of large-scale agricultural changes. Science 346:1360–1362

    Article  PubMed  CAS  Google Scholar 

  • Potts SG, Biesmeijer JC, Kremen C, Neumann P, Schweiger O, Kunin WE (2010) Global pollinator declines: trends, impacts and drivers. Trends Ecol Evol 25:345–353

    Article  PubMed  Google Scholar 

  • Regan EC, Santini L, Ingwall-King L, Hoffmann M, Rondinini C, Symes A, Taylor J, Butchart SHM (2015) Global trends in the status of bird and mammal pollinators. Conserv Lett 8:397–403

    Article  Google Scholar 

  • Ritland K (1990) Inferences about inbreeding depression based on changes of the inbreeding coefficient. Evolution 44:1230–1241

    Article  PubMed  Google Scholar 

  • Ritland K (2002) Extensions of models for the estimation of mating systems using n independent loci. Heredity 88:221–228

    Article  PubMed  Google Scholar 

  • Robertson AW, Ladley JJ, Kelly D, McNutt KL, Peterson PG, Merrett MF, Karl BJ (2008) Assessing pollination and fruit dispersal in Fuchsia excorticata (Onagraceae). N Z J Bot 46:299–314

    Article  Google Scholar 

  • Robertson AW, Kelly D, Ladley JJ (2011) Futile selfing in the trees Fuchsia excorticata (Onagraceae) and Sophora microphylla (Fabaceae): inbreeding depression over 11 years. Int J Plant Sci 172:191–198

    Article  Google Scholar 

  • Robertson HA, Dowding JE, Elliott GP, Hitchmough RA, Miskelly CM, O’Donnell CF, Powlesland RG, Sagar PM, Scofield RP, Taylor GA (2013) Conservation status of New Zealand birds, 2012. Department of Conservation, Wellington

    Google Scholar 

  • Rymer PD, Sandiford M, Harris SA, Billingham MR, Boshier DH (2015) Remnant Pachira quinata pasture trees have greater opportunities to self and suffer reduced reproductive success due to inbreeding depression. Heredity 115:115–124

    Article  PubMed  CAS  Google Scholar 

  • Sakai AK, Weller SG (1991) Ecological aspects of sex expression in subdioecious Schiedia globosa (Caryophyllaceae). Am J Bot 78:1280–1288

    Article  Google Scholar 

  • Schoen DJ, Brown AHD (1991) Intraspecific variation in population gene diversity and effective population size correlates with the mating system in plants. Proc Natl Acad Sci USA 88:4494–4497

    Article  PubMed  CAS  Google Scholar 

  • Smuts-Kennedy C, Parker KA (2013) Reconstructing avian biodiversity on Maungatautari. Notornis 60:93–106

    Google Scholar 

  • Spigler RB, Hamrick JL, Chang SM (2010) Increased inbreeding but not homozygosity in small populations of Sabatia angularis (Gentianaceae). Plant Syst Evol 284:131–140

    Article  Google Scholar 

  • Steadman DW (2006) Extinction & biogeography of tropical Pacific birds. University of Chicago Press, Chicago

    Google Scholar 

  • Sun M, Ganders FR (1986) Female frequencies in gynodioecious populations correlated with selfing rates in hermaphrodites. Am J Bot 73:1645–1648

    Article  Google Scholar 

  • Thomann M, Imbert E, Devaux C, Cheptou PO (2013) Flowering plants under global pollinator decline. Trends Plant Sci 18:353–359

    Article  PubMed  CAS  Google Scholar 

  • Van Etten ML, Robertson AW, Tate JA (2013) Microsatellite markers for the New Zealand endemic tree Fuchsia excorticata (Onagraceae). Appl Plant Sci 1:3

    Article  Google Scholar 

  • Van Etten ML, Tate JA, Anderson SH, Kelly D, Ladley JJ, Merrett MF, Peterson PG, Robertson AW (2015) The compounding effects of high pollen limitation, selfing rates and inbreeding depression leave a New Zealand tree with few viable offspring. Ann Bot 116:833–843

    Article  PubMed  PubMed Central  Google Scholar 

  • Vitousek PM, Mooney HA, Lubchenco J, Melillo JM (1997) Human domination of the earth’s ecosystems. Science 277:494–499

    Article  CAS  Google Scholar 

  • Wang JL, El-Kassaby YA, Ritland K (2012) Estimating selfing rates from reconstructed pedigrees using multilocus genotype data. Mol Ecol 21:100–116

    Article  PubMed  CAS  Google Scholar 

  • Wilcock C, Neiland R (2002) Pollination failure in plants: why it happens and when it matters. Trends Plant Sci 7:270–277

    Article  PubMed  CAS  Google Scholar 

  • Wilmshurst JM, Anderson AJ, Higham TF, Worthy TH (2008) Dating the late prehistoric dispersal of Polynesians to New Zealand using the commensal Pacific rat. Proc Natl Acad Sci USA 105:7676–7680

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Daniel York, Rhett Coleman, Melanya Yukhnevich, Hannah Rainforth and Briana Nelson for assistance with fieldwork. The authors thank the New Zealand Department of Conservation, Karori Wildlife Sanctuary, Maungatautari Ecological Island Trust, Hinewai Reserve, Ngati Rangi Trust, and Sally Pearce for permission to work at field sites. We also thank the reviewers for their helpful comments. This project was supported by the Massey University Research Fund to AWR and JT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Megan L. Van Etten.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Van Etten, M.L., Sukkaewnmanee, P., Tate, J.A. et al. Pollinator service affects quantity but not quality of offspring in a widespread New Zealand endemic tree species. Conserv Genet 19, 815–826 (2018). https://doi.org/10.1007/s10592-018-1056-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-018-1056-9

Keywords

Navigation