Abstract
Conservation successes of the past several decades provide natural settings to study post-bottleneck evolutionary processes in species undergoing recovery. Here, we study the impact of demographic change on genetic diversity in parallel natural experiments of historical decline and subsequent recovery in two sympatric pinniped species in the Northwest Atlantic, the gray seal (Halichoerus grypus atlantica) and harbor seal (Phoca vitulina concolor). We compare genetic diversity at the mitochondrial control region today to diversity in archaeological specimens, which represent the populations prior to the regional bounties of the late 1800s to mid-1900s that drastically reduced population sizes and led to local extirpations. We further assess genetic diversity throughout recovery, using biological collections from ongoing long-term studies of both species. Overall, the genetic data are consistent with the historical presence of large, genetically diverse populations of pinnipeds prior to human exploitation, and suggest that gray seals were more dramatically impacted by historical bottlenecks than harbor seals in the Northwest Atlantic. Current mitochondrial diversity in both species is relatively high, and we observe little change over the past several decades during a period of roughly parallel rapid population increases. However, there remain large differences in haplotype composition between pinniped populations of pre-exploitation and today, a lasting genetic signature of historical exploitation that is likely to persist into the future.
Similar content being viewed by others
References
Alter SE, Newsome SD, Palumbi SR (2012) Pre-whaling genetic diversity and population ecology in eastern Pacific gray whales: insights from ancient DNA and stable isotopes. PLoS ONE 7:e35039
Amos W, Balmford A (2001) When does conservation genetics matter? Heredity 87:257–265
Andersen LW, Lydersen C, Frie AK et al (2011) A population on the edge: genetic diversity and population structure of the world’s northernmost harbour seals (Phoca vitulina). Biol J Linn Soc Lond 102:420–439
Baker CS, Perry A, Bannister JL et al (1993) Abundant mitochondrial DNA variation and world-wide population structure in humpback whales. Proc Natl Acad Sci USA 90:8239–8243
Boskovic R, Kovacs KM, Hammill MO, White BN (1996) Geographic distribution of mitochondrial DNA haplotypes in grey seals (Halichoerus grypus). Can J Zool 74:1787–1796
Bowen WD, Lidgard D (2013) Marine mammal culling programs: review of effects on predator and prey populations. Mamm Rev 43:207–220
Bowen WD, Ellis SL, Iverson SJ, Boness DJ (2003a) Maternal and newborn life-history traits during periods of contrasting population trends: implications for explaining the decline of harbour seals (Phoca vitulina), on Sable Island. J Zool 261:155–163
Bowen WD, McMillan J, Mohn R (2003b) Sustained exponential population growth of grey seals at Sable Island, Nova Scotia. ICES J Mar Sci 60:1265–1274
Bowen WD, McMillan JI, Blanchard W (2007) Reduced population growth of gray seals at Sable Island: evidence from pup production and age of primiparity. Mar Mamm Sci 23:48–64
Bowen WD, den Heyer C, McMillan JI, Hammill MO (2011) Pup production at Scotian shelf grey seal (Halichoerus grypus) colonies in 2010. Fisheries and Oceans Canada. Canadian Science Advisory Secretariat Research Document 2011/066
Braje TJ, Rick TC (2011) Human impacts on seals, sea lions, and sea otters: integrating archaeology and ecology in the Northeast Pacific. University of California Press, Berkeley
Caro TM, Laurenson MK (1994) Ecological and genetic factors in conservation: a cautionary tale. Science 263:485–486
Chassin-Noria O, Abreu-Grobois A, Dutton PH, Oyama K (2004) Conservation genetics of the east Pacific green turtle (Chelonia mydas) in Michoacan, Mexico. Genetica 121:195–206
Collins CJ, Rawlence NJ, Prost S et al (2014) Extinction and recolonization of coastal megafauna following human arrival in New Zealand. Proc R Soc Lond B 281:20140097
Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9:772
de Bruyn M, Hall BL, Chauke LF et al (2009) Rapid response of a marine mammal species to Holocene climate and habitat change. PLoS Genet 5:e1000554
den Heyer CE, Lang SLC, Bowen WD, Hammill MO (2017) Pup production at Scotian shelf grey seal (Halichoerus grypus) colonies in 2016. Fisheries and Oceans Canada. Canadian Science Advisory Secretariat Research Document 2016/nnn
Dickerson BR, Ream RR, Vignieri SN, Bentzen P (2010) Population structure as revealed by mtDNA and microsatellites in Northern fur seals, Callorhinus ursinus, throughout their range. PLoS ONE 5:e10671
Drummond AJ, Rambaut A, Shapiro B, Pybus OG (2005) Bayesian coalescent inference of past population dynamics from molecular sequences. Mol Biol Evol 22:1185–1192
Drummond AJ, Suchard MA, Xie D, Rambaut A (2012) Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol 29:1969–1973
Evans S, Godino IB, Álvarez M et al (2016) Using combined biomolecular methods to explore whale exploitation and social aggregation in hunter-gatherer-fisher society in Tierra del Fuego. J Arch Sci Rep 6:757–767
Ewonus PA, Cannon A, Yang DY (2011) Addressing seasonal site use through ancient DNA species identification of Pacific salmon at Dionisio Point, Galiano Island, British Columbia. J Arch Sci 38:2536–2546
Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567
Fietz K, Graves JA, Olsen MT (2013) Control control control: a reassessment and comparison of GenBank and chromatogram mtDNA sequence variation in Baltic grey seals (Halichoerus grypus). PLoS ONE 8:e72853
Fietz K, Galatius A, Teilmann J et al (2016) Shift of grey seal subspecies boundaries in response to climate, culling and conservation. Mol Ecol 25:4097–4112
Frankham R, Bradshaw CJA, Brook BW (2014) Genetics in conservation management: revised recommendations for the 50/500 rules, Red List criteria and population viability analyses. Biol Conserv 170:56–63
Gaggiotti OE, Jones F, Lee WM et al (2002) Patterns of colonization in a metapopulation of grey seals. Nature 416:424–427
Gilbert JR, Waring GT, Wynne KM, Guldager N (2005) Changes in abundance of harbor seals in Maine, 1981–2001. Mar Mamm Sci 21:519–535
Gilbert MTP, Binladen J, Miller W et al (2007) Recharacterization of ancient DNA miscoding lesions: insights in the era of sequencing-by-synthesis. Nucleic Acids Res 35:1–10
Goodall-Copestake WP, Tarling GA, Murphy EJ (2012) On the comparison of population-level estimates of haplotype and nucleotide diversity: a case study using the gene cox1 in animals. Heredity 109:50–56
Goodman SJ (1998) Patterns of extensive genetic differentiation and variation among European harbor seals (Phoca vitulina vitulina) revealed using microsatellite DNA polymorphisms. Mol Biol Evol 15:104–118
Hailer F, Helander B, Folkestad AO et al (2006) Bottlenecked but long-lived: high genetic diversity retained in white-tailed eagles upon recovery from population decline. Biol Lett 2:316–319
Hall A, Kershaw J (2012) Review of the status, trends and potential causes for the decline in abundance of harbour seals around the coast of Scotland. Sea Mammal Research Unit. Marine Mammal Scientific Support Research Programme MMSS/001/11
Hammill MO, Gosselin JF, Stenson GB (2007) Abundance of Northwest Atlantic grey seals in Canadian waters. NAMMCO Sci Publ 6:99–115
Hammill MO, den Heyer CE, Bowen WD (2014) Grey seal population trends in Canadian waters, 1960–2014. Fisheries and Oceans Canada. Canadian Science Advisory Secretariat Research Document 2014/037
Hansson B, Bensch S, Hasselquist D et al (2000) Increase of genetic variation over time in a recently founded population of great reed warblers (Acrocephalus arundinaceus) revealed by mirosatellites and DNA fingerprinting. Mol Ecol 9:1529–1538
Hasagawa M, Kishino H, Yano T (1985) Dating the human-ape splitting by molecular clock of mitochondrial DNA. J Mol Evol 22:160–174
Hoffman JI, Grant SM, Forcada J, Phillips CD (2011) Bayesian inference of a historical bottleneck in a heavily exploited marine mammal. Mol Ecol 20:3989–4008
Hofreiter M, Jaenicke V, Serre D, von Haeseler A, Pääbo S (2001a) DNA sequences from multiple amplifications reveal artifacts induced by cytosine deamination in ancient DNA. Nucleic Acids Res 29:4793–4799
Hofreiter M, Serre D, Poinar HN, Kuch M, Pääbo S (2001b) Ancient DNA. Nat Rev Genet 2:353–359
Ingraham RC, Robinson BS, Sobolik KD, Heller AS (2015) “Left for the tide to take back”: specialized processing of seals on Machias Bay, Maine. J Isl Coast Archaeol 11:89–106
Irwin DL, Mitchelson KR, Findlay I (2003) PCR product cleanup methods for capillary electrophoresis. Biotechniques 34:932–936
Jensen J (2003) The prehistory of Denmark. Routledge, London
Johnson WE, Onorato DP, Roelke ME et al (2010) Genetic restoration of the Florida panther. Science 329:1641–1645
Johnston DW, Frungillo J, Smith A et al (2015) Trends in stranding and by-catch rates of gray and harbor seals along the northeastern coast of the United States: evidence of divergence in the abundance of two sympatric phocid species? PLoS ONE 10:e0131660
Kalinowski ST (2005) HP-RARE 1.0: a computer program for performing rarefaction on measures of allelic richness. Mol Ecol Notes 5:187–189
Katona SK, Rough V, Richardson DT (1993) A field guide to whales, dolphins, and seals from Cape Cod to Newfoundland, 4th edn. Smithsonian Institution Press, Washington
Keller LF, Jeffery KJ, Arcese P et al (2001) Immigration and the ephemerality of a natural population bottleneck: evidence from molecular markers. Proc R Soc Lond B 268:1387–1394
Klimova A, Phillips CD, Fietz K et al (2014) Global population structure and demographic history of the grey seal. Mol Ecol 23:3999–4017
Lamb T, Lydeard C, Walker RB, Gibbons JW (1994) Molecular systematics of map turtles (Graptemys): a comparison of mitochondrial restriction site versus sequence data. Syst Biol 43:543–559
Larson S, Jameson R, Etnier M, Fleming M, Bentzen P (2002) Loss of genetic diversity in sea otters (Enhydra lutris) associated with the fur trade of the 18th and 19th centuries. Mol Ecol 11:1899–1903
Lavigueur L, Hammill MO (1993) Distribution and seasonal movements of grey seals, Halichoerus grypus, born in the Gulf of St. Lawrence and eastern Nova Scotia shore. Can Field-Nat 107:329–340
Lawson JW, Renouf D (1985) Parturition in the Atlantic harbor seal, Phoca vitulina concolor. J Mamm 66:395–398
Lelli B, Harris DE, Aboueissa A-M (2009) Seal bounties in Maine and Massachusetts, 1888 to 1962. Northeast Nat 16:239–254
Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452
Lotze HK, Coll M, Magera AM, Ward-Paige C, Airoldi L (2011) Recovery of marine animal populations and ecosystems. Trends Ecol Evol 26:595–603
Magera AM, Mills Flemming JE, Kaschner K, Christensen LB, Lotze HK (2013) Recovery trends in marine mammal populations. PLoS ONE 8:e77908
McInerney P, Adams P, Hadi MZ (2014) Error rate comparison during polymerase chain reaction by DNA polymerase. Mol Biol Int 2014:287430
McLeod BA, Brown MW, Moore MJ et al (2008) Bowhead whales, and not right whales, were the primary target of 16th- to 17th-century Basque whalers in the western North Atlantic. Arctic 61:61–75
McLeod BA, Frasier TR, Lucas Z (2014) Assessment of the extirpated Maritimes walrus using morphological and ancient DNA analysis. PLoS ONE 9:e99569
Miller PS, Hedrick PW (2001) Purging of inbreeding depression and fitness decline in bottlenecked populations of Drosophila melanogaster. J Evol Biol 14:595–601
Nei M, Maruyama T, Chakraborty R (1975) The bottleneck effect and genetic variability in populations. Evolution 29:1–10
Noren SR, Boness DJ, Iverson SJ, McMillan J, Bowen WD (2008) Body condition at weaning affects the duration of the postweaning fast in gray seal pups (Halichoerus grypus). Physiol Biochem Zool 81:269–277
O’Brien SJ, Roelke ME, Marker L et al (1985) Genetic basis for species vulnerability in the cheetah. Science 227:1428–1434
Pääbo S, Poinar H, Serre D et al (2004) Genetic analyses from ancient DNA. Annu Rev Genet 38:645–679
Paradis E (2010) pegas: an R package for population genetics with an integrated-modular approach. Bioinformatics 26:419–420
Parsons TJ, Muniec DS, Sullivan K et al (1997) A high observed substiution rate in the human mitochondrial DNA control region. Nat Genet 15:363–368
Phillips CD, Turjillo RG, Gelatt TS et al (2009) Assessing substitution patterns, rates and homoplasy at HVRI of Steller sea lions, Eumetopias jubatus. Mol Ecol 18:3379–3393
Pinsky ML, Newsome SD, Dickerson BR et al (2010) Dispersal provided resilience to range collapse in a marine mammal: insights from the past to inform conservation biology. Mol Ecol 19:2418–2429
Prost S, Anderson CNK (2011) TempNet: a method to display statistical parsimony networks for heterochronous DNA sequence data. Methods Ecol Evol 2:663–667
Rambaut A, Ho SYW, Drummond AJ, Shapiro B (2009) Accommodating the effect of ancient DNA damage on inferences of demographic histories. Mol Biol Evol 26:245–248
Rambaut A, Suchard MA, Xie D, Drummond AJ (2014) Tracer v1.6. http://beast.bio.ed.ac.uk/Tracer. Accessed 1 Feb 2017
Rawlence NJ, Collins CJ, Anderson CNK et al (2016) Human-mediated extirpation of the unique Chatham Islands sea lion and implications for the conservation management of remaining New Zealand sea lion populations. Mol Ecol 25:3950–3961
Reitz EJ (2004) “Fishing down the food web”: a case study from St. Augustine, Florida, USA. Am Antiq 69:63–83
Richardson DT (1976) Assessment of harbor seal and gray seal populations in Maine 1974–1975. Report to the Marine Mammal Commission Contract No. MM4AC009
Robinson BS, Jacobson GL, Yates MG, Spiess AE, Cowie ER (2009) Atlantic salmon, archaeology and climate change in New England. J Arch Sci 36:2184–2191
Rogers AR, Harpending H (1992) Population growth makes waves in the distribution of pairwise genetic differences. Mol Biol Evol 9:552–569
Rough V (1991) Muskeget gray seals, winter and spring, 1991. Report to the Marine Mammal Commission
Saccheri IJ, Brakefield PM, Nichols RA (1996) Severe inbreeding depression and rapid fitness rebound in the butterfly Bicyclus anynana (Satyridae). Evolution 50:2000–2013
Salis AT, Easton LJ, Robertson BC et al (2016) Myth or relict: Does ancient DNA detect the enigmatic Upland seal? Mol Phylogenet Evol 97:101–106
Savage AE, Becker CG, Zamudio KR (2015) Linking genetic and environmental factors in amphibian disease risk. Evol Appl 8:560–572
Sjare B, Lebeuf M, Veinott G (2005) Harbour seals in Newfoundland and Labrador: a preliminary summary of new data on aspects of biology, ecology and contaminant profiles. Fisheries and Oceans Canada. Canadian Science Advisory Secretariat Research Document 2005/030
Slatkin M, Hudson RR (1991) Pairwise comparisons of mitochondrial DNA sequences in stable and exponentially growing populations. Genetics 129:555–562
Speck GF (1935) Penobscot tales and religious beliefs. J Am Folklore 48:1–107
Spiess AE, Lewis RA (2001) The Turner Farm fauna: 5000 years of hunting and fishing in Penobscot Bay, ME. Occas Publ Maine Archaeol 11:177
Stanley HF, Casey S, Carnahan JM et al (1996) Worldwide patterns of mitochondrial DNA differentiation in the harbor seal (Phoca vitulina). Mol Biol Evol 13:368–382
Tamura K, Peterson D, Peterson N et al (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739
Thomas MG, Weale ME, Jones AL et al (2002) Founding mothers of Jewish communities: geographically separated Jewish groups were independently founded by very few female ancestors. Am J Hum Genet 70:1411–1420
Waring GT, Josephson E, Maze-Foley K, Rosel PE (2016) US Atlantic and Gulf of Mexico marine mammal stock assessments—2015. NOAA Tech Memo NMFS-NE-238
Weale ME (2003) TEST_h_DIFF: testing for differences in h between two populations. http://www.ucl.ac.uk/mace-lab/resources/software. Accessed 10 Apr 2017
Weber DS, Stewartt BS, Garza JC, Lehman N (2000) An empirical assessment of the severity of the northern elephant seal population bottleneck. Curr Biol 10:1287–1290
Weber DS, Stewart BS, Lehman N (2004) Genetic consequences of a severe population bottleneck in the Guadelupe fur seal (Arctocephalus townsendi). J Hered 95:144–153
Westemeier RL, Brawn JD, Simpson SA et al (1998) Tracking the long-term decline and recovery of an isolated population. Science 282:1695–1698
Wood SA, Frasier TR, McLeod BA et al (2011) The genetics of recolonization: an analysis of the stock structure of grey seals (Halichoerus grypus) in the Northwest Atlantic. Can J Zool 89:490–497
Wood LaFond SA (2009) Dynamics of recolonization: a study of the gray seal (Halichoerus grypus) in the Northeast U.S. Dissertation, University of Massachusetts, Boston
Acknowledgements
We thank the following individuals who helped with access to sample archives or ongoing collections: Christine Bubac, Johanne Guerin, Matthew Harnden, Nell den Heyer, Elizabeth Josephson, and Gordon Waring. We also thank Mike Simpkins, Per Palsbøll, Morten Tange Olsen, and an anonymous reviewer for their thoughtful feedback on the manuscript. The import/export of seal samples between Canada and the United States was conducted under NOAA Permit No. 17670-03 (issued to the NMFS Northeast Fisheries Science Center) and authorization from the NOAA National Marine Fisheries Service and Greater Atlantic Regional Fisheries Office (issued to Brian Robinson). Funding for the fieldwork was provided by the Department of Fisheries and Oceans Canada, Natural Sciences and Engineering Research Council of Canada, NOAA Northeast Fisheries Science Center, Northeast Fisheries Observer Program, and the NIH/NIAID Centers of Excellence for Influenza Research and Surveillance (HHSN272201400008C). K.M.C. was supported by a National Science Foundation Postdoctoral Research Fellowship in Biology under Grant No. 1523568. We are grateful to Brian Robinson’s early contributions to the work, through animated discussion, liaising with the Passamaquoddy Tribe, and providing access to his archaeological collections. Brian passed away prior to the completion of this work; we mourn his loss but continue to appreciate his lasting contributions to archaeology in Maine.
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Cammen, K.M., Vincze, S., Heller, A.S. et al. Genetic diversity from pre-bottleneck to recovery in two sympatric pinniped species in the Northwest Atlantic. Conserv Genet 19, 555–569 (2018). https://doi.org/10.1007/s10592-017-1032-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10592-017-1032-9