Skip to main content

Genetic structure and genetic diversity of the endangered grassland plant Crepis mollis (Jacq.) Asch. as a basis for conservation management in Germany

Abstract

Plant diversity is decreasing mainly through anthropogenic factors like habitat fragmentation, which lead to spatial separation of remaining populations and thereby affect genetic diversity and structure within species. Twenty populations of the threatened grassland species Crepis mollis were studied across Germany (578 individual plants) based on microsatellite genotyping. Genetic diversity was significantly higher in populations from the Alpine region than from the Central Uplands. Furthermore, genetic diversity was significantly positively correlated with population size. Despite smaller populations in the Uplands there were no signs of inbreeding. Genetic differentiation between populations was moderate (F ST = 0.09) and no isolation by distance was found. In contrast, large-scale spatial genetic structure showed a significant decrease of individual pairwise relatedness, which was higher than in random pairs up to 50 km. Bayesian analyses detected three genetic clusters consistent with two regions in the Uplands and an admixture group in the Alpine region. Despite the obvious spatial isolation of the currently known populations, the absence of significant isolation by distance combined together with moderate population differentiation indicates that drift rather than inter-population gene flow drives differentiation. The absence of inbreeding suggests that pollination is still effective, while seed dispersal by wind is likely to be impaired by discontinuous habitats. Our results underline the need for maintaining or improving habitat quality as the most important short term measure for C. mollis. For maintaining long-term viability, establishing stepping stone habitats or, where this is not possible, assisted gene flow needs to be considered.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Abbreviations

FSGS:

Fine-scale spatial genetic structure

LSGS:

Large-scale spatial genetic structure

References

  1. Aguilar R, Ashworth L, Galetto L, Aizen MA (2006) Plant reproductive susceptibility to habitat fragmentation: review and synthesis through a meta-analysis. Ecol Lett 9:968–980. https://doi.org/10.1111/j.1461-0248.2006.00927.x

    PubMed  Article  Google Scholar 

  2. Andersson S, Shaw RG (1994) Phenotypic plasticity in Crepis tectorum (Asteraceae): genetic correlations across light regimens. Heredity 72:113–125. https://doi.org/10.1038/hdy.1994.17

    Article  Google Scholar 

  3. Arnaud-Haond S, Teixeira S, Massa SI, Billot C, Saenger P, Coupland G, Duarte CM, Serrao EA (2006) Genetic structure at range edge: low diversity and high inbreeding in Southeast Asian mangrove (Avicennia marina) populations. Mol Ecol 15:3515–3525. https://doi.org/10.1111/j.1365-294X.2006.02997.x

    PubMed  CAS  Article  Google Scholar 

  4. Babcock EB (1947a) The Genus Crepis. In: Part I. The taxonomy, phylogeny, distribution and evolution of Crepis. University of California Publications, Berkely and Los Angeles

    Google Scholar 

  5. Babcock EB (1947b) The genus crepis. Part II. systematic treatment. University of California Publications, Berkely and Los Angeles

    Google Scholar 

  6. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B 57:289–300

    Google Scholar 

  7. Bettinger A, Buttler KP, Caspari S, Klotz J, May R, Metzing D (2013) Verbreitungsatlas der Farn-und Blütenpflanzen Deutschlands. Bundesamt für Naturschutz, Bonn

    Google Scholar 

  8. Bremer K, Anderberg AA (1994) Asteraceae: cladistics and classification. Timber Press, Portland

    Google Scholar 

  9. Bundesamt für Naturschutz (2011) FloraWeb: Daten und Informationen zu Wildpflanzen und zur Vegetation Deutschlands. http://www.floraweb.de. Accessed 12 Apr 2017

  10. Charlesworth D, Pannell J (2001) Mating systems and population genetic structure in the light of coalescent theory. Spec Publ-British Ecol Soc 14:73–96

    Google Scholar 

  11. Chen C, Durand E, Forbes F, François O (2007) Bayesian clustering algorithms ascertaining spatial population structure: a new computer program and a comparison study. Mol Ecol Notes 7:747–756. https://doi.org/10.1111/j.1471-8286.2007.01769.x

    Article  Google Scholar 

  12. Cheptou P-O, Berger A, Blanchard A, Collin C, Escarre J (2000) The effect of drought stress on inbreeding depression in four populations of the Mediterranean outcrossing plant Crepis sancta (Asteraceae). Heredity 85:294–302. https://doi.org/10.1046/j.1365-2540.2000.00759.x

    PubMed  Article  Google Scholar 

  13. Cheptou P-O, Carrue O, Rouifed S, Cantarel A (2008) Rapid evolution of seed dispersal in an urban environment in the weed Crepis sancta. Proc Natl Acad Sci 105:3796–3799. https://doi.org/10.1073/pnas.0708446105

    PubMed  PubMed Central  Article  Google Scholar 

  14. Corlett RT (2016) Plant diversity in a changing world: status, trends, and conservation needs. Plant Divers 38:10–16. https://doi.org/10.1016/j.pld.2016.01.001

    Article  PubMed  PubMed Central  Google Scholar 

  15. Cornuet JM, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144:2001–2014

    PubMed  PubMed Central  CAS  Google Scholar 

  16. Crawley M, Johnston A, Silvertown J, Dodd M, Mazancourt CD, Heard M, Henman D, Edwards G (2005) Determinants of species richness in the park grass experiment. Am Nat 165:179–192

    PubMed  CAS  Article  Google Scholar 

  17. Di Rienzo A, Peterson AC, Garza JC, Valdes AM, Slatkin M, Freimer NB (1994) Mutational processes of simple-sequence repeat loci in human populations. Proc Natl Acad Sci USA 91:3166–3170. https://doi.org/10.1073/pnas.91.8.3166

    PubMed  PubMed Central  Article  Google Scholar 

  18. Diekmann M, Dupré C, Müller J, Wittig B (2016) Handlungsleitfaden zur wiedereinbürgerung von pflanzenarten als naturschutzmaßnahme. Deutsche Bundesstiftung Umwelt, Osnabruck

    Google Scholar 

  19. DiLeo MF, Rico Y, Boehmer HJ, Wagner HH (2017) An ecological connectivity network maintains genetic diversity of a flagship wildflower, Pulsatilla vulgaris. Biol Conserv 212:12–21. https://doi.org/10.1016/j.biocon.2017.05.026

    Article  Google Scholar 

  20. Dröge G, Barker K, Astrin JJ, Bartels P, Butler C, Cantrill D, Coddington J, Forest F, Gemeinholzer B, Hobern D, Mackenzie-Dodds J, Tuama Ó, Petersen É, Sanjur G, Schindel O, Seberg D O (2014) The global genome biodiversity network (GGBN) data portal. Nucleic Acids Res 42:D607–D612. https://doi.org/10.1093/nar/gkt928

    CAS  Article  Google Scholar 

  21. Duwe VK, Muller LAH, Borsch T, SA (2016) Development of Microsatellite Markers for Crepis mollis (Asteraceae). Appl Plant Sci 4:1600022. https://doi.org/10.3732/apps.1600022

    Article  Google Scholar 

  22. Duwe VK, Muller LAH, Borsch T, Ismail SA (2017) Pervasive genetic differentiation among Central European populations of the threatened Arnica montana L. and genetic erosion at lower elevations. Perspect Plant Ecology. https://doi.org/10.1016/j.ppees.2017.02.003

    Article  Google Scholar 

  23. Earl DA, vonHoldt BM (2012) Structure harvester: a website and program for visualizing structure output and implementing the Evanno method. Conserv Genet Resour 4:359–361. https://doi.org/10.1007/s12686-011-9548-7

    Article  Google Scholar 

  24. Enke N, Gemeinholzer B (2008) Babcock revisited: new insights into generic delimitation and character evolution in Crepis L. (Compositae: Cichorieae) from ITS and matK sequence data. Taxon 57:756–768

    Google Scholar 

  25. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol 14:2611–2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x

    PubMed  CAS  Article  Google Scholar 

  26. Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491

    PubMed  PubMed Central  CAS  Google Scholar 

  27. Fischer M, Matthies D (1997) Mating structure and inbreeding and outbreeding depression in the rare plant Gentianella germanica (Gentianaceae). Am J Bot 84:1685–1685

    PubMed  CAS  Article  Google Scholar 

  28. Fischer M, Van Kleunen M, Schmid B (2000) Genetic allee effects on performance, plasticity and developmental stability in a clonal plant. Ecol Lett 3:530–539. https://doi.org/10.1111/j.1461-0248.2000.00188.x

    Article  Google Scholar 

  29. Foster BL, Gross KL (1998) Species richness in a successional grassland: effects of nitrogen enrichment and plant litter. Ecology 79:2593–2602. https://doi.org/10.1890/0012-9658(1998)079[2593:SRIASG]2.0.CO;2

    Article  Google Scholar 

  30. Frankham R (2005) Genetics and extinction. Biol Conserv 126:131–140

    Article  Google Scholar 

  31. Frankham R, Ballou JD, Eldridge MDB, Lacy RC, Ralls K, Dudash MR, Fenster CB (2011) Predicting the probability of outbreeding depression. Conserv Biol 25:465–475. https://doi.org/10.1111/j.1523-1739.2011.01662.x

    PubMed  Article  Google Scholar 

  32. Gaggiotti OE, Lange O, Rassmann K, Gliddon C (1999) A comparison of two indirect methods for estimating average levels of gene flow using microsatellite data. Mol Ecol 8:1513–1520. https://doi.org/10.1046/j.1365-294x.1999.00730.x

    PubMed  CAS  Article  Google Scholar 

  33. Garner A, Rachlow JL, Waits LP (2005) Genetic diversity and population divergence in fragmented habitats: conservation of Idaho ground squirrels. Conserv Genet 6:759–774. https://doi.org/10.1007/s10592-005-9035-3

    Article  Google Scholar 

  34. Goudet J (1995) FSTAT (version 1.2): a computer program to calculate F-statistics. J Hered 86: 485–486. https://doi.org/10.1093/oxfordjournals.jhered.a111627

    Article  Google Scholar 

  35. Gough L, Osenberg CW, Gross KL, Collins SL (2000) Fertilization effects on species density and primary productivity in herbaceous plant communities. Oikos 89:428–439. https://doi.org/10.1034/j.1600-0706.2000.890302.x

    Article  Google Scholar 

  36. Hampe A, Petit RJ (2005) Conserving biodiversity under climate change: the rear edge matters. Ecol Lett 8:461–467

    PubMed  Article  Google Scholar 

  37. Hamrick JL, Godt MJW (1996) Effects of life history traits on genetic diversity in plant species. Philos Trans R Soc London Ser B 351:1291–1298. https://doi.org/10.1098/rstb.1996.0112

    Article  Google Scholar 

  38. Hardy OJ, Vekemans X (2002) SPAGeDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes 2:618–620. https://doi.org/10.1046/j.1471-8286.2002.00305.x

    CAS  Article  Google Scholar 

  39. Hautekèete N-C, Frachon L, Luczak C, Toussaint B, van Landuyt W, van Rossum F, Piquot Y (2015) Habitat type shapes long-term plant biodiversity budgets in two densely populated regions in north-western Europe. Divers Distrib 21:631–642. https://doi.org/10.1111/ddi.12287

    Article  Google Scholar 

  40. Hegi G (1987) DCCXCIX. Crepis L. Pippau. In: Wagenitz G (ed) Illustrierte Flora von Mittel-Europa VI (4,4), 2nd edn. Verlag Paul Parey, Berlin, pp 1134–1180

    Google Scholar 

  41. Hodgson JG, Grime JP, Wilson PJ, Thompson K, Band SR (2005) The impacts of agricultural change (1963–2003) on the grassland flora of Central England: processes and prospects. Basic Appl Ecol 6:107–118. https://doi.org/10.1016/j.baae.2005.01.009

    Article  Google Scholar 

  42. Holderegger R, Segelbacher G (2016) Naturschutzgenetik: Ein Handbuch für die Praxis. Haupt Verlag, Bern

    Google Scholar 

  43. Honnay O, Jacquemyn H (2007) Susceptibility of common and rare plant species to the genetic consequences of habitat fragmentation. Conserv Biol 21:823–831. https://doi.org/10.1111/j.1523-1739.2006.00646.x

    PubMed  Article  Google Scholar 

  44. Huck S, Büdel B, Schmitt T (2012) Ice-age isolation, postglacial hybridization and recent population bottlenecks shape the genetic structure of Meum athamanticum in Central Europe. Flora 207:399–407. https://doi.org/10.1016/j.flora.2012.03.005

    Article  Google Scholar 

  45. Hutchison DW, Templeton AR (1999) Correlation of pairwise genetic and geographic distance measures: inferring the relative Influences of gene flow and drift on the distribution of genetic variability. Evol Int J org Evol 53:1898–1914. https://doi.org/10.2307/2640449

    Article  Google Scholar 

  46. Ismail SA, Duwe VK, Zippel E, Borsch T (2017) Assessment of current genetic structure from local to geographic scale indicates brake down of historically extensive gene flow in the dry grassland species Scabiosa canescens Waldst. & Kit. (Dipsacaceae). Divers Distrib 1–11

  47. Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23: 1801–1806. https://doi.org/10.1093/bioinformatics/btm233

    PubMed  CAS  Article  Google Scholar 

  48. Johansson M, Primmer CR, Merilae J (2007) Does habitat fragmentation reduce fitness and adaptability? A case study of the common frog (Rana temporaria). Mol Ecol 16:2693–2700. https://doi.org/10.1111/j.1365-294X.2007.03357.x

    PubMed  Article  Google Scholar 

  49. Jordano P (2017) What is long-distance dispersal? And a taxonomy of dispersal events. J Ecol 105:75–84. https://doi.org/10.1111/1365-2745.12690

    Article  Google Scholar 

  50. Kalinowski ST (2005) HP-RARE 1.0: a computer program for performing rarefaction on measures of allelic richness. Mol Ecol Notes 5:187–189. https://doi.org/10.1111/j.1471-8286.2004.00845.x

    CAS  Article  Google Scholar 

  51. Kalisz S, Vogler DW (2003) Benefits of autonomous selfing under unpredictable pollinator environments. Ecology 84:2928–2942. https://doi.org/10.1890/02-0519

    Article  Google Scholar 

  52. Kisiel W, Zielińska K, Joshi SP (2000) Sesquiterpenoids and phenolics from Crepis mollis. Phytochemistry 54:763–766. https://doi.org/10.1016/S0031-9422(00)00167-9

    CAS  Article  Google Scholar 

  53. Klimek S, Richter gen. Kemmermann A, Hofmann M, Isselstein J (2007) Plant species richness and composition in managed grasslands: the relative importance of field management and environmental factors. Biol Conserv 134:559–570. https://doi.org/10.1016/j.biocon.2006.09.007

    Article  Google Scholar 

  54. Korneck D, Schnittler M, Vollmer I (1996) Rote Liste der Farn- und Blütenpflanzen (Peridophyta et Spermatophyta) Deutschlands. In: Ludwig G, Schnittler M (eds) Rote Liste gefährdeter Pflanzen Deutschlands, Schriftenreihe für Vegetationskunde, 28. Bundesamt für Naturschutz, Bonn, pp 21–187

    Google Scholar 

  55. Korneck D, Schnittler M, Klingenstein F, Ludwig G, Takla M, Bohn U, May R (1998) Warum verarmt unsere Flora? Auswertung der Roten Liste der Farn-und Blütenpflanzen Deutschlands. In: BfN (ed) Ursachen des Artenrückganges von Wildpflanzen und Möglichkeiten zur Erhaltung der Artenvielfalt, Schriftenreihe für Vegetationskunde, 29, Bundesamt für Naturschutz, Bonn- Bad Godesberg, pp 299–444

    Google Scholar 

  56. Kuemmerle T, Levers C, Erb K, Estel S, Jepsen MR, Müller D, Plutzar C, Stürck J, Verkerk PJ, Verburg PH (2016) Hotspots of land use change in Europe. Environ Res Lett 11:064020

    Article  Google Scholar 

  57. Lammi A, Siikamäki P, Mustajärvi K (1999) Genetic diversity, population size, and fitness in central and peripheral populations of a rare plant Lychnis viscaria. Conserv Biol 13:1069–1078. https://doi.org/10.1046/j.1523-1739.1999.98278.x

    Article  Google Scholar 

  58. Legendre P, Legendre LFJ (1998) Numerical ecology, 2nd edn. Elsevier, Amsterdam

    Google Scholar 

  59. Lesica P, Allendorf FW (1995) When are peripheral populations valuable for conservation? Conserv Biol 9:753–760. https://doi.org/10.1046/j.1523-1739.1995.09040753.x

    Article  Google Scholar 

  60. Lloyd DG (1992) Self- and cross-fertilization in plants. II. The selection of self- fertilization. Int J Plant Sci 153:370–380

    Article  Google Scholar 

  61. Loiselle BA, Sork VL, Nason J, Graham C (1995) Spatial genetic structure of a tropical understory shrub, Psychotria officinalis (Rubiaceae). Am J of Bot 1420–1425

  62. Ludwig G, May R, Otto C (2007) Verantwortlichkeit Deutschlands für die weltweite Erhaltung der Farn-und Blütenpflanzen: vorläufige Liste. BfN, Bonn–BadGodesberg

    Google Scholar 

  63. Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220

    PubMed  CAS  Google Scholar 

  64. Maruyama T, Fuerst PA (1985) Population bottlenecks and nonequilibrium models in population genetics II. Number of alleles in a small population that was formed by a recent bottleneck. Genetics 111:675–689

    PubMed  PubMed Central  CAS  Google Scholar 

  65. Matthies D, Bräuer I, Maibom W, Tscharntke T (2004) Population size and the risk of local extinction: empirical evidence from rare plants. Oikos 105:481–488. https://doi.org/10.1111/j.0030-1299.2004.12800.x

    Article  Google Scholar 

  66. Meusel H, Jäger EJ (1992) Vergleichende Chorologie der Zentraleuropäischen Flora. Gustav Fischer Verlag, Jena

    Google Scholar 

  67. Michalakis Y, Excoffier L (1996) A generic estimation of population subdivision using distances between alleles with special reference for microsatellite loci. Genetics 142:1061–1064

    PubMed  PubMed Central  CAS  Google Scholar 

  68. Montalvo AM, Ellstrand NC (2001) Nonlocal transplantation and outbreeding depression in the subshrub Lotus scoparius (Fabaceae). Am J Bot 88:258–269

    PubMed  CAS  Article  Google Scholar 

  69. Mráz P, Gaudeul M, Rioux D, Gielly L, Choler P, Taberlet P, IntraBioDiv Consortium (2007) Genetic structure of Hypochaeris uniflora (Asteraceae) suggests vicariance in the Carpathians and rapid post-glacial colonization of the Alps from an eastern Alpine refugium. J Biogeogr 34:2100–2114. https://doi.org/10.1111/j.1365-2699.2007.01765.x

    Article  Google Scholar 

  70. Muller MH, Leppälä J, Savolainen O (2008) Genome-wide effects of postglacial colonization in Arabidopsis lyrata. Heredity 100:47–58

    PubMed  CAS  Article  Google Scholar 

  71. Nathan R (2006) Long-distance dispersal of plants. Science 313:786–788. https://doi.org/10.1126/science.1124975

    PubMed  CAS  Article  Google Scholar 

  72. Nogues-Bravo D, Araujo MB, Romdal T, Rahbek C (2008) Scale effects and human impact on the elevational species richness gradients. Nature 453:216–219. https://doi.org/10.1038/nature06812

    PubMed  CAS  Article  Google Scholar 

  73. O’Reilly J (2010) Species account: Crepis mollis. Botanical Society of the British Isles. http://www.bsbi.org.uk. Accessed 10 May 2017

  74. Oelmann Y, Broll G, Hölzel N, Kleinebecker T, Vogel A, Schwartze P (2009) Nutrient impoverishment and limitation of productivity after 20 years of conservation management in wet grasslands of north-western Germany. Biol Conserv 142:2941–2948. https://doi.org/10.1016/j.biocon.2009.07.021

    Article  Google Scholar 

  75. Oostermeijer JGB, Altenburg RGM, Den Nijs HCM (1995) Effects of outcrossing distance and selfing on fitness components in the rare Gentiana pneumonanthe (Gentianaceae). Acta Bot Neerl 44:257–268. https://doi.org/10.1111/j.1438-8677.1995.tb00784.x

    Article  Google Scholar 

  76. Ottewell KM, Bickerton DC, Byrne M, Lowe AJ (2016) Bridging the gap: a genetic assessment framework for population-level threatened plant conservation prioritization and decision-making. Divers Distrib 22:174–188. https://doi.org/10.1111/ddi.12387

    Article  Google Scholar 

  77. Ouborg NJ, van Treuren R, van Damme JMM (1991) The significance of genetic erosion in the process of extinction. Oecologia 86:359–367

    PubMed  CAS  Article  Google Scholar 

  78. Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28:2537–2539. https://doi.org/10.1111/j.1471-8286.2005.01155.x

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  79. Petit RJ, Kremer A, Wagner DB (1993) Finite island model for organelle and nuclear genes in plants. Heredity 71:630–641

    Article  Google Scholar 

  80. Petit S, Firbank L, Wyatt B, Howard D (2001) MIRABEL: models for integrated review and assessment of biodiversity in European landscapes. Ambio 30:81–88. https://doi.org/10.1579/0044-7447-30.2.81

    PubMed  CAS  Article  Google Scholar 

  81. Petit RJ, Aguinagalde I, Beaulieu J-L, Bittkau C, Brewer S, Cheddadi R, Ennos R, Fineschi S, Grivet D, Lascoux M, Mohanty A, Müller-Starck G, Demesure-Musch B, Palmé A, Martín JP, Rendell S, Vendramin GG (2003) Glacial refugia: hotspots but not melting pots of genetic diversity. Science 300:1563–1565. https://doi.org/10.1126/science.1083264

    PubMed  CAS  Article  Google Scholar 

  82. Piry S, Luikart G, Cornuet JM (1999) BOTTLENECK: a computer program for detecting recent reductions in the effective population size suing allele frequency data. J Hered 90:502–503. https://doi.org/10.1093/jhered/90.4. 502

    Article  Google Scholar 

  83. Pluess AR, Stöcklin J (2004) Genetic diversity and fitness in Scabiosa columbaria in the Swiss Jura in relation to population size. Conserv Genet 5:145–156. https://doi.org/10.1023/B:COGE.0000029999.10808.c2

    CAS  Article  Google Scholar 

  84. Poschlod P, Bakker JP, Kahmen S (2005) Changing land use and its impact on biodiversity. Basic Appl Ecol 6:93–98. https://doi.org/10.1016/j.baae.2004.12.001

    Article  Google Scholar 

  85. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed  PubMed Central  CAS  Google Scholar 

  86. Purschke O, Sykes MT, Reitalu T, Poschlod P, Prentice HC (2012) Linking landscape history and dispersal traits in grassland plant communities. Oecologia 168:773–783

    PubMed  Article  Google Scholar 

  87. Purschke O, Sykes MT, Poschlod P, Michalski SG, Römermann C, Durka W, Kühn I, Prentice HC (2014) Interactive effects of landscape history and current management on dispersal trait diversity in grassland plant communities. J Ecol 102:437–446. https://doi.org/10.1111/1365-2745.12199

    PubMed  Article  Google Scholar 

  88. R Development Core Team (2013) R: a language and environment for statistical computing. R project for statistical computing, Vienna, Austria

  89. Reichel K, Richter F, Eichel L, Kącki Z, Wesche K, Welk E, Neinhuis C, Ritz CM (2016) Genetic diversity in the locally declining Laserpitium prutenicum L. and the more common Selinum carvifolia (L.) L.—a “silent goodbye”? Conserv Genet 17:847–860. https://doi.org/10.1007/s10592-016-0827-4

    Article  Google Scholar 

  90. Reisch C, Anke A, Röhl M (2005) Molecular variation within and between ten populations of Primula farinosa (Primulaceae) along an altitudinal gradient in the northern Alps. Basic Appl Ecol 6:35–45. https://doi.org/10.1016/j.baae.2004.09.004 doi

    CAS  Article  Google Scholar 

  91. Rico Y, Wagner H (2016) Reduced fine-scale spatial genetic structure in grazed populations of Dianthus carthusianorum. Heredity 117:367–374

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  92. Rico Y, Holderegger R, Boehmer HJ, Wagner HH (2014) Directed dispersal by rotational shepherding supports landscape genetic connectivity in a calcareous grassland plant. Mol Ecol 23:832–842. https://doi.org/10.1111/mec.12639

    PubMed  Article  Google Scholar 

  93. Ronikier M, CieŚLak E, Korbecka G (2008) High genetic differentiation in the alpine plant Campanula alpina Jacq. (Campanulaceae): evidence for glacial survival in several Carpathian regions and long-term isolation between the Carpathians and the Alps. Mol Ecol 17:1763–1775. https://doi.org/10.1111/j.1365-294X.2008.03664.x

    PubMed  CAS  Article  Google Scholar 

  94. Rosenberg NA (2004) Distruct: a program for the graphical display of population structure. Mol Ecol Notes 4:137–138. https://doi.org/10.1046/j.1471-8286.2003.00566.x

    Article  Google Scholar 

  95. Rousset F (1997) Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145:1219–1228

    PubMed  PubMed Central  CAS  Google Scholar 

  96. Rousset F (2008) Genepop’007: a complete re-implementation of the genepop software for Windows and Linux. Mol Ecol Resour 8:103–106. https://doi.org/10.1111/j.1471-8286.2007.01931.x

    PubMed  Article  Google Scholar 

  97. Schönswetter P, Tribsch A, Stehlik I, Niklfeld H (2004) Glacial history of high alpine Ranunculus glacialis (Ranunculaceae) in the European Alps in a comparative phylogeographical context. Biol J Linn Soc 81:183–195. https://doi.org/10.1111/j.1095-8312.2003.00289.x

    Article  Google Scholar 

  98. Slatkin M (1995) A measure of population subdivision based on microsatellite allele frequencies. Genetics 139:457–462

    PubMed  PubMed Central  CAS  Google Scholar 

  99. Socher SA, Prati D, Boch S, Müller J, Klaus VH, Hölzel N, Fischer M (2012) Direct and productivity-mediated indirect effects of fertilization, mowing and grazing on grassland species richness. J Ecol 100:1391–1399. https://doi.org/10.1111/j.1365-2745.2012.02020.x

    Article  Google Scholar 

  100. Strijker D (2005) Marginal lands in Europe—causes of decline. Basic Appl Ecol 6: 99–106. https://doi.org/10.1016/j.baae.2005.01.001

    Article  Google Scholar 

  101. Szczecińska M, Sramko G, Wołosz K, Sawicki J (2016) Genetic diversity and population structure of the rare and endangered plant species Pulsatilla patens (L.) mill in east central Europe. PloS ONE 11:e0151730. https://doi.org/10.1371/journal.pone.0151730

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  102. Tackenberg O (2001) Methoden zur Bewertung gradueller unterschiede des Ausbreitungspotentials von Pflanzenarten. Modellierung des Windausbreitungspotentials und regelbasierte Ableitung des Fernausbreitungspotentials. Dissertation, Philipps-Universität Marburg

  103. Trakhtenbrot A, Nathan R, Perry G, Richardson DM (2005) The importance of long-distance dispersal in biodiversity conservation. Divers Distrib 11:173–181. https://doi.org/10.1111/j.1366-9516.2005.00156.x

    Article  Google Scholar 

  104. Trubina M (2014) Effect of temperature and fluorides on growth and development of Crepis tectorum L. seedlings from populations of polluted and nonpolluted habitats. Contemp Probl Ecol 7:104. https://doi.org/10.1134/S1995425514010168

    Article  Google Scholar 

  105. Van Treuren R, Bijlsma R, Van Delden W, Ouborg N (1991) The significance of genetic erosion in the process of extinction. I. Genetic differentiation in Salvia pratensis and Scabiosa columbaria in relation to population size. Heredity 66:181–189

    Article  Google Scholar 

  106. Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) Micro-checker: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538. https://doi.org/10.1111/j.1471-8286.2004.00684.x

    CAS  Article  Google Scholar 

  107. Vekemans X, Hardy OJ (2004) New insights from fine-scale spatial genetic structure analyses in plant populations. Mol Ecol 13:921–935. https://doi.org/10.1046/j.1365-294X.2004.02076.x

    PubMed  CAS  Article  Google Scholar 

  108. Vitt P, Belmaric PN, Book R, Curran M (2016) Assisted migration as a climate change adaptation strategy: lessons from restoration and plant reintroductions. Isr J Plant Sci 63(4): 250–261. https://doi.org/10.1080/07929978.2016.1258258

    Article  Google Scholar 

  109. Vucetich JA, Waite TA (2003) Spatial patterns of demography and genetic processes across the species’ range: null hypotheses for landscape conservation genetics. Conserv Genet 4:639–645. https://doi.org/10.1023/A:1025671831349

    Article  Google Scholar 

  110. Walker K, Robinson L (2011) Yorkshire’s threatened plants: Northern Hawk’s-beard Crepis mollis. The Naturalist 136:90–99

    Google Scholar 

  111. Walz U (2005) Landschaftszerschneidung in Grenzräumen - Sachsen und die Sächsisch-Böhmische Schweiz. GAIA 14:171–174. https://doi.org/10.14512/gaia.14.2.22

    Article  Google Scholar 

  112. Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    PubMed  CAS  Google Scholar 

  113. Wen C, Hsiao J (2001) Altitudinal genetic differentiation and diversity of Taiwan lily (Lilium longiflorum var. formosanum; Liliaceae) using RAPD markers and morphological characters. Int J Plant Sci 162:287–295

    CAS  Article  Google Scholar 

  114. Willi Y, Fischer M (2005) Genetic rescue in interconnected populations of small and large size of the self-incompatible Ranunculus reptans. Heredity 95:437–443. https://doi.org/10.1038/sj.hdy.680073

    PubMed  CAS  Article  Google Scholar 

  115. Willis (1996) Where did all the flowers go? The fate of temperate European flora during glacial periods. Endeavour 20:110–114. https://doi.org/10.1016/0160-9327(96)10019-3

    Article  Google Scholar 

  116. Wright S (1951) The genetical structure of populations. Ann Eugen 15:323–354

    PubMed  CAS  Article  Google Scholar 

  117. Wright S (1978) Evolution and the genetics of populations. Volume 4. Variability between and among natural populations. University of Chicago Press, Chicago

    Google Scholar 

  118. Young A, Boyle T, Brown T (1996) The population genetic consequences of habitat fragmentation for plants. Trends Ecol Evol 11:413–418. https://doi.org/10.1016/0169-5347(96)10045-8

    PubMed  CAS  Article  Google Scholar 

  119. Zidorn C, Ellmerer-Müller EP, Stuppner H (1999) Guaianolides from Calycocorsus stipitatus and Crepis tingitana. Phytochemistry 50:1061–1062. https://doi.org/10.1016/S0031-9422(98)00637-2

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank L. Botschen and R. Wanke for technical assistance with the lab work and especially R. Wanke for support in the field. We are thankful to E. Sossai, R. Hand, T. Gregor, C. Niederbichler, F. Richter, H. Korsch, E. von Raab-Straube, A. Schulte, R. Götte, K. Rieche, W. Westhus, D. Franke, and U. Hermann from the Carl-Orff-Stiftung who gave information about records or helped finding the study species. Special thanks are due to E. Welk who has generously provided the distribution map of C. mollis and to K. Govers, G. Dröge and C. Stiegler for their general support. We thank the authorities at state and regional level who granted permits for collection in protected areas. This study was funded by the German Federal Agency for Nature Conservation (BfN) under grant number FKZ 3512-86-0400 in the context of the project “Integration von Ex-situ und In-situ- Maßnahmen zur Erhaltung gefährdeter Blütenpflanzen in Deutschland-ein Modellvorhaben zur Umsetzung der Global Strategy for Plant Conservation (GSPC)”.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Virginia K. Duwe.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 780 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Duwe, V.K., Muller, L.A.H., Reichel, K. et al. Genetic structure and genetic diversity of the endangered grassland plant Crepis mollis (Jacq.) Asch. as a basis for conservation management in Germany. Conserv Genet 19, 527–543 (2018). https://doi.org/10.1007/s10592-017-1025-8

Download citation

Keywords

  • Microsatellites
  • Genetic diversity
  • Crepis mollis
  • Inbreeding
  • Gene flow
  • Spatial genetic structure