Conservation Genetics

, Volume 19, Issue 1, pp 221–233 | Cite as

Genetic evidence of fragmented populations and inbreeding in the Colombian endemic Dahl’s toad-headed turtle (Mesoclemmys dahli)

  • Natalia Gallego-GarcíaEmail author
  • Mario Vargas-Ramírez
  • Germán Forero-Medina
  • Susana Caballero
Research Article


Population fragmentation is one of the most concerning consequences of habitat fragmentation, as small and isolated populations suffer increased genetic drift and inbreeding. However, the extent to which habitat fragmentation leads to population fragmentation depends not only on the landscape structure, but also on the response of organisms to it. This behavioral component makes it difficult to detect population fragmentation even if the habitat is fragmented, unless appropriate tools are used. In this study, we used a molecular approach to evaluate if Dahl’s toad-headed turtle (Mesoclemmys dahli) population was fragmented, given that it occurs in a very restricted area within the most degraded biome of Colombia, the tropical dry forest. We developed a panel of 15 microsatellite loci in order to perform the first genetic assessment of M. dahli across its complete geographic range. We found that M. dahli has significant genetic structure with at least four subpopulations, with surprisingly moderate to high levels of genetic diversity. Despite high levels of genetic diversity, subpopulations are very small (effective population sizes < 50) and isolated, with little to no contemporary gene flow among them. As a consequence, mating among related individuals has been occurring, and all four populations are showing high degrees of inbreeding. To counteract this threat, we recommend an urgent genetic rescue strategy accompanied by habitat restoration, and advocate for a new conservation status assessment, not based on geographic range, but on adult population size and level of fragmentation.


Population structure Effective population size Tropical dry forest Gene flow Habitat fragmentation 



We thank field researchers Luis Eduardo Rojas, Jhon Fredy Gaitán and Oscar Díaz for their invaluable help in sample collection. We thank the laboratory technicians Sonia Quintanilla and Mauricio Buitrago. This project was funded by Ecopetrol S.A. as part of their Tropical Dry Forest Initiative in Colombia. We thank the Wildlife Conservation Society, Turtle Survival Alliance, Fundación Mario Santo Domingo, and Universidad de los Andes for technical and financial support. Sampling and access to genetic resources allowed by “Contrato de acceso a recursos genéticos para investigación científica sin interés comercial No. 65, signed between the Ministerio de Ambiente y Desarrollo Sostenible de Colombia and Mario Vargas-Ramírez.


  1. Allendorf FW, Luikart G, Aitken SN (2013) Conservation and the genetic of populations. Wiley-Blackwell, OxfordGoogle Scholar
  2. Armenteras D, Gast F, Villareal H (2003) Andean forest fragmentation and the representativeness of protected natural areas in the eastern Andes. Colombia Biol Conserv 113:245–256. doi: 10.1016/S0006-3207(02)00359-2 CrossRefGoogle Scholar
  3. Baguette M, Blanchet S, Legrand D et al (2013) Individual dispersal, landscape connectivity and ecological networks. Biol Rev 88:310–326. doi: 10.1111/brv.12000 CrossRefPubMedGoogle Scholar
  4. Balkenhol N, Cushman S, Storfer A, Waits L (2015) Landscape genetics: concepts, methods, applications. Wiley-Blackwell, West SussexCrossRefGoogle Scholar
  5. Balloux F (2004) Heterozygote excess in small populations and the heterozygote-excess effective population size. Evol Int J Org Evol 58:1891–1900. doi: 10.1111/j.0014-3820.2004.tb00477.x CrossRefGoogle Scholar
  6. Barnett JR, Ruiz-Gutierrez V, Coulon A, Lovette IJ (2008) Weak genetic structuring indicates ongoing gene flow across White-ruffed Manakin (Corapipo altera) populations in a highly fragmented Costa Rica landscape. Conserv Genet 9:1403–1412. doi: 10.1007/s10592-007-9463-3 CrossRefGoogle Scholar
  7. Brzeski KE, Rabon DR, Chamberlain MJ et al (2014) Inbreeding and inbreeding depression in endangered red wolves (Canis rufus). Mol Ecol 23:4241–4255. doi: 10.1111/mec.12871 CrossRefPubMedGoogle Scholar
  8. Callens T, Galbusera P, Matthysen E et al (2011) Genetic signature of population fragmentation varies with mobility in seven bird species of a fragmented Kenyan cloud forest. Mol Ecol 20:1829–1844. doi: 10.1111/j.1365-294X.2011.05028.x CrossRefPubMedGoogle Scholar
  9. Cárdenas-Arevalo G, Gallego-García N, Castaño-Mora OV (in press) Distribución, historia natural y estado de conservación de las tortugas continentales en el departamento de Córdoba, Colombia. Biblioteca José Jerónimo TrianaGoogle Scholar
  10. Castaño-Mora OV, Medem F (2002) Batrachemys dahli. In: Libro rojo de reptiles de Colombia. Instituto de Ciencias Naturales-Universidad Nacional de Colombia, Ministerio del Medio Ambiente, Conservación Internacional-Colombia, Bogotá, pp 77–79Google Scholar
  11. Do C, Waples RS, Peel D et al (2014) NeEstimator v2: re-implementation of software for the estimation of contemporary effective population size from genetic data. Mol Ecol Resour 14:209–214. doi: 10.1111/1755-0998.12157 CrossRefPubMedGoogle Scholar
  12. Earl DA, VonHoldt BM (2012) Structure harvester: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361. doi: 10.1007/s12686-011-9548-7 CrossRefGoogle Scholar
  13. Edwards AWF (1971) Distances between populations on the basis of gene frequencies. Biometrics 27:873–881CrossRefPubMedGoogle Scholar
  14. Ellegren H, Ellegren N (2016) Determinants of genetic diversity. Nat Rev Genet 17:422–433. doi: 10.1038/nrg.2016.58 CrossRefPubMedGoogle Scholar
  15. England PR, Osler GHR, Woodworth LM et al (2003) Effects of intense versus diffuse population bottlenecks on microsatellite genetic diversity and evolutionary potential. Conserv Genet 4:595–604. doi: 10.1023/A:1025639811865 CrossRefGoogle Scholar
  16. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol 14:2611–2620. doi: 10.1111/j.1365-294X.2005.02553.x CrossRefPubMedGoogle Scholar
  17. Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567. doi: 10.1111/j.1755-0998.2010.02847.x CrossRefPubMedGoogle Scholar
  18. Forero-Medina G, Joppa L (2010) Representation of global and national conservation priorities by Colombia’s protected area network. PLoS ONE 5:e13210. doi: 10.1371/journal.pone.0013210 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Forero-Medina G, Cárdenas-Arevalo G, Castaño-Mora OV (2011) Abundance, home range, and movement patterns of the endemic species Dahl’s Toad-headed turtle (Mesoclemmys dahli) in Cesar, Colombia. Chelonian Conserv Biol 10:228–236. doi: 10.2744/ccb-0929.1 CrossRefGoogle Scholar
  20. Forero-Medina G, Cárdenas-Arevalo G, Castaño-M O V (2012) Habitat modeling of Dahl’s toad-headed turtle Mesoclemmys dahli in Colombia. Herpetol Conserv Biol 7:313–322Google Scholar
  21. Forero-Medina G, Castaño-Mora OV, Cárdenas-Arevalo G, Medina-Rangel G (2013) Mesoclemmys dahli (Zangerl and Medem 1958) – Dahl’ s toad-headed turtle, Carranchina, Tortuga Montañera. In: Rhodin AGJ, Pritchard PCH, Dijk PP van et al (eds) Conservation biology of freshwater turtles and tortoises: a compilation project of the IUCN/SSC tortoise and freshwater turtle specialist group, vol 5. Chelonian Research Monographs, Lunenburg, pp 069.1–069.8Google Scholar
  22. Forero-Medina G, Yusti-Muñoz AP, Castaño-Mora OV (2014) Distribución geográfica de las tortugas continentales de Colombia y su representación en áreas protegidas. Acta Biológica Colomb 19:415–426CrossRefGoogle Scholar
  23. Forero-Medina G, Castaño-Mora OV, Cárdenas-Arevalo G et al (2015) Mesoclemmys dahli. In: Morales-Betancourt MA, Lasso CA, Páez VP, Bock BC (eds) Libro rojo de reptiles de Colombia. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Universidad de Antioquia, Bogotá, pp 142–145Google Scholar
  24. Frankham R (2005) Genetics and extinction. Biol Conserv 126:131–140. doi: 10.1016/j.biocon.2005.05.002 CrossRefGoogle Scholar
  25. Frankham R (2015) Genetic rescue of small inbred populations: meta-analysis reveals large and consistent benefits of gene flow. Mol Ecol 24:2610–2618. doi: 10.1111/mec.13139 CrossRefPubMedGoogle Scholar
  26. Frankham R, Ballou JD, Briscoe DA (2002) Introduction to conservation genetics. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  27. Frankham R, Bradshaw CJ, Brook BW (2014) Genetics in conservation management: revised recommendations for the 50/500 rules, Red List criteria and population viability analyses. Biol Conserv 170:56–63. doi: 10.1016/j.biocon.2013.12.036 CrossRefGoogle Scholar
  28. Garza C, Williamson EG (2001) Detection of reduction in population size using data from microsatellite loci. Mol Ecol 10:305–318CrossRefPubMedGoogle Scholar
  29. Goudet J (2001) FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.3). Available from Updated from Goudet (1995)
  30. Hardy OJ, Vekemans X (2002) SPAGeDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes 2:618–620. doi: 10.1046/j.1471-8286.2002.00305.x CrossRefGoogle Scholar
  31. IUCN (2016) The IUCN red list of threatened species. Version 2016-2. Accessed 4 Sep 2016
  32. Jombart T (2008) Adegenet: an R package for the multivariate analysis of genetic markers. Bioinformatics 24:1403–1405CrossRefPubMedGoogle Scholar
  33. Jombart T, Devillard S, Balloux F (2010) Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet 11:94. doi: 10.1186/1471-2156-11-94 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Jones OR, Wang J (2010) COLONY: a program for parentage and sibship inference from multilocus genotype data. Mol Ecol Resour 10:551–555. doi: 10.1111/j.1755-0998.2009.02787.x CrossRefPubMedGoogle Scholar
  35. Kalinowski ST (2005) HP-RARE 1.0: a computer program for performing rarefaction on measures of allelic richness. Mol Ecol Notes 5:187–189. doi: 10.1111/j.1471-8286.2004.00845.x CrossRefGoogle Scholar
  36. Keller LF, Waller DM (2002) Inbreeding effects in wild populations. Trends Ecol Evol 17:230–241. doi: 10.1016/S0169-5347(02)02489-8 CrossRefGoogle Scholar
  37. Krebs CJ (1999) Ecological methodology, 2nd edn. Harper & Row, New YorkGoogle Scholar
  38. Kuo CH, Janzen FJ (2004) Genetic effects of a persistent bottleneck on a natural population of ornate box turtles (Terrapene ornata). Conserv Genet 5:425–437. doi: 10.1023/B:COGE.0000041020.54140.45 CrossRefGoogle Scholar
  39. Luikart G, Cornuet J (1998) Empirical evaluation of a test for identifying allele recently data bottlenecked populations from frequency data. Soc Conserv Biol 12:228–237. doi: 10.1111/j.1523-1739.1998.96388.x CrossRefGoogle Scholar
  40. Luikart G, Allendorf FW, Cornuet JM, Sherwin WB (1998) Distortion of allele frequency distributions provides a test for recent population bottlenecks. J Hered 89:238–247. doi: 10.1093/jhered/89.3.238 CrossRefPubMedGoogle Scholar
  41. Lynch M, Conery J, Burger R (1995) Mutation accumulation and the extinction of small populations. Am Nat 146:489. doi: 10.1086/285812 CrossRefGoogle Scholar
  42. Mace GM, Lande R (1991) Assessing extinction threats: toward a reevaluation of IUCN threatened species categories. Conserv Biol 5:148–157. doi: 10.1111/j.1523-1739.1991.tb00119.x CrossRefGoogle Scholar
  43. Mace GM, Collar NJ, Gaston KJ et al (2008) Quantification of extinction risk: IUCN’s system for classifying threatened species. Conserv Biol 22:1424–1442. doi: 10.1111/j.1523-1739.2008.01044.x CrossRefPubMedGoogle Scholar
  44. Medem F (1966) Contribuciones al conocimiento sobre la ecología y distribución geográfica de Phrynops (Batrachemys) dahli; (Testudinata, Pleurodira, Chelidae). Caldasia 9:467–489Google Scholar
  45. Medina-Rangel G, Forero-Medina G (2008) Mesoclemmys dahli (Dahl’s Toad Headed Turtle). Herpetol Rev 39:336Google Scholar
  46. Meirmans PG (2014) Nonconvergence in Bayesian estimation of migration rates. Mol Ecol Resour 14:726–733. doi: 10.1111/1755-0998.12216 CrossRefPubMedGoogle Scholar
  47. Palsbøll PJ, Zachariah Peery M, Olsen MT et al (2013) Inferring recent historic abundance from current genetic diversity. Mol Ecol 22:22–40. doi: 10.1111/mec.12094 CrossRefPubMedGoogle Scholar
  48. Pizano C, García H (eds) (2014) El bosque seco tropical en Colombia. Instituto de Investigación de Recursos Biológicos Alexander von Humbold. Bogotá, D. C., ColombiaGoogle Scholar
  49. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedPubMedCentralGoogle Scholar
  50. Pritchard JK, Wen X, Falushb D (2010) Documentation for structure software: Version 2.3. University of Chicago, Department of Human Genetics, ChicagoGoogle Scholar
  51. Queller DC, Goodnight KF (1989) Estimating relatedness using genetic markers. Evol Int J Org Evol 43:258–275CrossRefGoogle Scholar
  52. Raymond M, Rousset F (1995) GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249CrossRefGoogle Scholar
  53. Reed DH (2004) Extinction risk in fragmented habitats. Anim Conserv 7:181–191. doi: 10.1017/S1367943004001313 CrossRefGoogle Scholar
  54. Roffler GH, Schwartz MK, Pilgrim KL et al (2016) Identification of landscape features influencing gene flow: how useful are habitat selection models? Evol Appl 9:805–817. doi: 10.1111/eva.12389 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Rosenberg NA (2004) DISTRUCT: A program for the graphical display of population structure. Mol Ecol Notes 4:137–138. doi: 10.1046/j.1471-8286.2003.00566.x CrossRefGoogle Scholar
  56. Rueda-Almonacid JV, Galvis-Peñuela P, López-Ospina C, Lozano GY (2004) Estudio sobre la distribución geográfica y el estatus ecológico de la tortuga carranchina (Batrachemys dahli) en el bajo Sinú, departamento de Córdoba. Final report to Corporación. Autónoma Regional de los Valles del Sinú y San Jorge – CVS and Conservación Internacional-Colombia, BogotáGoogle Scholar
  57. Rueda-Almonacid JV, Carr JL, Mittermeier RA et al (2007) Las tortugas y los cocodrilianos de los países andinos del trópico. Editorial Panamericana, formas e impresos, BogotáGoogle Scholar
  58. Schuelke M (2000) An economic method for the fluorescent labeling of PCR fragments. Nat Biotechnol 18:233–234. doi: 10.1038/72708 CrossRefPubMedGoogle Scholar
  59. Sebastien P (2015) The program STRUCTURE does not reliably recover the correct population structure when sampling is uneven: sub-sampling and new estimators alleviate the problem. Mol Ecol Resour 608–627. doi: 10.1111/1755-0998.12512
  60. Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538. doi: 10.1111/j.1471-8286.2004.00684.x CrossRefGoogle Scholar
  61. van Dijk PP, Iverson J, Rhodin A et al (2014) Turtles of the world, 7th edition: annotated checklist of taxonomy, synonymy, distribution with maps, and conservation status. In: Rhodin AGJ, Pritchard PCH, van Dijk PP et al (eds) Conservation biology of freshwater turtles and tortoises: a compilation project of the IUCN/SSC tortoise and freshwater turtle specialist group, vol 5. Chelonian Research Monographs, Lunenburg, pp 329–479Google Scholar
  62. Vekemans X, Hardy OJ (2004) New insights from fine-scale spatial genetic structure analyses in plant populations. Mol Ecol 13:921–935. doi: 10.1046/j.1365-294X.2004.02076.x CrossRefPubMedGoogle Scholar
  63. Vinet L, Zhedanov A (2010) A “missing” family of classical orthogonal polynomials. Genetics 144:2001–2014. doi: 10.1088/1751-8113/44/8/085201 Google Scholar
  64. Wang J (2009) A new method for estimating effective population sizes from a single sample of multilocus genotypes. Mol Ecol 18:2148–2164. doi: 10.1111/j.1365-294X.2009.04175.x CrossRefPubMedGoogle Scholar
  65. Wang J (2011) Coancestry: a program for simulating, estimating and analysing relatedness and inbreeding coefficients. Mol Ecol Resour 11:141–145. doi: 10.1111/j.1755-0998.2010.02885.x CrossRefPubMedGoogle Scholar
  66. Wang J (2016) A comparison of single-sample estimators of effective population sizes from genetic marker data. Mol Ecol 4692–4711. doi: 10.1111/mec.13725
  67. Waples RS (2015) Testing for Hardy-Weinberg proportions: have we lost the plot? J Hered 106:1–19. doi: 10.1093/jhered/esu062 CrossRefPubMedGoogle Scholar
  68. Wilson GA, Rannala B (2003) Bayesian inference of recent migration rates using multilocus genotypes. Genetics 163:1177–1191PubMedPubMedCentralGoogle Scholar
  69. Zangerl R, Medem F (1958) A new species of chelid turtle, Phrynops (Batrachemys) dahli, from Colombia. Bull Museum Comp Zool 119:375–390Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Laboratorio de Ecología Molecular de Vertebrados Acuáticos LEMVA, Departamento de Ciencias BiológicasUniversidad de los AndesBogotáColombia
  2. 2.Biodiversidad y Conservación Genética, Instituto de GenéticaUniversidad Nacional de ColombiaBogotáColombia
  3. 3.Museum of Zoology, Senckenberg DresdenDresdenGermany
  4. 4.Wildlife Conservation Society, Turtle Survival AllianceCaliColombia

Personalised recommendations