Skip to main content

Advertisement

Log in

Genetic variation of complete mitochondrial genome sequences of the Sumatran rhinoceros (Dicerorhinus sumatrensis)

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

The Sumatran rhinoceros (Dicerorhinus sumatrensis) is the smallest and one of the most endangered rhinoceros species, with less than 100 individuals estimated to live in the wild. It was originally divided into three subspecies but only two have survived, D. sumatrensis sumatrensis (Sumatran subspecies), and D. s. harrissoni (Bornean). Questions regarding whether populations of the Sumatran rhinoceros should be treated as different management units to preserve genetic diversity have been raised, particularly in light of its severe decline in the wild and low breeding success in captivity. This work aims to characterize genetic differentiation between Sumatran rhinoceros subspecies using complete mitochondrial genomes, in order to unravel their maternal evolutionary history and evaluate their status as separate management units. We identified three major phylogenetic groups with moderate genetic differentiation: two distinct haplogroups comprising individuals from both the Malay Peninsula and Sumatra, and a third group from Borneo. Estimates of divergence time indicate that the most recent common ancestor of the Sumatran rhinoceros occurred approximately 360,000 years ago. The three mitochondrial haplogroups showed a common divergence time about 80,000 years ago corresponding with a major biogeographic event in the Sundaland region. Patterns of mitochondrial genetic differentiation may suggest considering Sumatran rhinoceros subspecies as different conservation units. However, the management of subspecies as part of a metapopulation may appear as the last resource to save this species from extinction, imposing a conservation dilemma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Amato G, Wharton D, Zainuddin ZZ, Powell JR (1995) Assessment of conservation units for the Sumatran rhinoceros (Dicerorhinus sumatrensis). Zoo Biol 14:395–402. doi:10.1002/zoo.1430140502

    Article  CAS  Google Scholar 

  • Ambrose SH (1998) Late Pleistocene human population bottlenecks, volcanic winter, and differentiation of modern humans. J Hum Evol 34:623–651. doi:10.1006/jhev.1998.0219

    Article  CAS  PubMed  Google Scholar 

  • Anderson-Lederer RM, Linklater WL, Ritchie PA (2012) Limited mitochondrial DNA variation within South Africa’s black rhino (Diceros bicornis minor) population and implications for management. Afr J Ecol 50:404–413. doi:10.1111/j.1365-2028.2012.01333.x

    Article  Google Scholar 

  • Bandelt HJ, Forster P, Ruhl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37–48. doi:10.1093/oxfordjournals.molbev.a026036

    Article  CAS  PubMed  Google Scholar 

  • Benton MJ, Donoghue PCJ (2007) Paleontological evidence to date the tree of life. Mol Biol Evol 24:26–53. doi:10.1093/molbev/msl150

    Article  CAS  PubMed  Google Scholar 

  • Bird MI, Taylor D, Hunt C (2005) Palaeoenvironments of insular Southeast Asia during the Last Glacial Period: a savanna corridor in Sundaland? Quat Sci Rev 24:2228–2242. doi:10.1016/j.quascirev.2005.04.004

    Article  Google Scholar 

  • Brown SM, Houlden BA (2000) Conservation genetics of the black rhinoceros (Diceros bicornis). Conserv Genet 1:365–370. doi:10.1023/A:1011579807460

    Article  CAS  Google Scholar 

  • Christman J (2010) The Sumatran rhinoceros (Dicerorhinus sumatrensis) international studbook. Disney’s Animal Kingdom, Orlando

    Google Scholar 

  • Clark PU, Dyke AS, Shakun JD, Carlson AE, Clark J, Wohlfarth B, Mitrovica JX, Hostetler SW, McCabe AM (2009) The last glacial maximum. Science 325:710–714. doi:10.1126/science.1172873

    Article  CAS  PubMed  Google Scholar 

  • Cozzuol MA, Clozato CL, Holanda EC, Rodrigues FHG, Nienow S, de Thoisy B, Redondo RAF, Santos FR (2013) A new species of tapir from the Amazon. J Mamm 94:1331–1345. doi:10.1644/12-MAMM-A-169.1

    Article  Google Scholar 

  • Das PK, Borthakur U, Sarma HK, Talukdar BK (2015) Population genetic assessment of extant populations of greater one-horned rhinoceros (Rhinoceros unicornis) in India. Eur J Wildl Res 61:841–851. doi:10.1007/s10344-015-0960-2

    Article  Google Scholar 

  • Drummond AJ, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7:e214. doi:10.1186/1471-2148-7-214

    Article  Google Scholar 

  • Drummond AJ, Rambaut A, Shapiro B, Pybus OG (2005) Bayesian coalescent inference of past population dynamics from molecular sequences. Mol Biol Evol 22:1185–1192. doi:10.1093/molbev/msi103

    Article  CAS  PubMed  Google Scholar 

  • Eisenmann V (1992) Origins, dispersals, and migrations of Equus (Mammalia, Perissodactyla). Cour Forsch Inst Senckenberg 153:161–170

    Google Scholar 

  • Ellis S, Ivy J, Ramono WS (2011) Future directions towards the persistence of the captive Sumatran rhino population. White paper accessed 24 Jan 2011. http://www.rhinoresourcecenter.com/index.php?s=1&act=pdfviewer&id=1404633462&folder=140

  • Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetic analyses under Linux and Windows. Mol Ecol Resour 10:564–567. doi:10.1111/j.1755-0998.2010.02847.x

    Article  PubMed  Google Scholar 

  • Fernando P, Polet G, Foead N, Ng LS, Pastorini J, Melnick DJ (2006) Genetic diversity, phylogeny and conservation of the Javan rhinoceros (Rhinoceros sondaicus). Conserv Genet 7:439–448. doi:10.1007/s10592-006-9139-4

    Article  CAS  Google Scholar 

  • Foose TJ, van Strien N (1997) Asian rhinos—status survey and conservation action plan. IUCN, Gland

    Google Scholar 

  • George M, Chemnick LG, Cisova D, Gabrisova E, Straril A, Ryder OA (1993) Genetic differentiation of white rhinoceros subspecies: diagnostic differences in mitochondrial DNA and serum proteins. In: Ryder OA (ed) Rhinoceros biology and conservation. Zoological Society of San Diego, San Diego, pp 105–113

    Google Scholar 

  • Goossens B, Salgado-Lynn M, Rovie-Ryan JJ, Ahmad AH, Payne J, Zainuddin ZZ, Nathan SKSS, Ambu LN (2013) Genetics and the last stand of the Sumatran rhinoceros Dicerorhinus sumatrensis. Oryx 47:340–344. doi:10.1017/S0030605313000045

    Article  Google Scholar 

  • Groves CP (1967) The rhinoceroses of Southeast Asia. Säugetierkd Mitt 15:221–237

    Google Scholar 

  • Groves CP, Fernando P, Robovsky J (2010) The sixth rhino: a taxonomic re-assessment of the critically endangered northern white rhinoceros. PLoS ONE 5(4):e9703. doi:10.1371/journal.pone.0009703

    Article  PubMed  PubMed Central  Google Scholar 

  • Guindon S, Dufayard J-F, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321. doi:10.1093/sysbio/syq010

    Article  CAS  PubMed  Google Scholar 

  • Havmøller RG, Payne J, Ramono W, Ellis S, Yoganand K, Long B, Dinerstein E, Williams AC, Putra RH, Gawi J, Talukdar BK, Burgess N (2016) Will current conservation responses save the critically endangered Sumatran rhinoceros Dicerorhinus sumatrensis? Oryx 50:355–359. doi:10.1017/S0030605315000472

    Article  Google Scholar 

  • Heller R, Chikhi L, Siegismund HR (2013) The confounding effect of population structure on Bayesian skyline plot inferences of demographic history. PLoS ONE 8(5):e62992. doi:10.1371/journal.pone.0062992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ho SYW, Shapiro B (2011) Skyline-plot methods for estimating demographic history from nucleotide sequences. Mol Ecol Resour 11:423–434. doi:10.1111/j.1755-0998.2011.02988.x

    Article  PubMed  Google Scholar 

  • Houck ML, Ryder OA, Vahala J, Kock RA, Oosterhuis JE (1994) Diploid chromosome number and chromosomal variation in the white rhinoceros (Ceratotherium simum). J Hered 85:30–34. doi:10.1093/oxfordjournals.jhered.a111387

    CAS  PubMed  Google Scholar 

  • Houck ML, Ryder OA, Kumamoto AT, Benirschke K (1995) Cytogenetics of the Rhinocerotidae. Verh Berl Erkrank Zootiere 37:25–32

    Google Scholar 

  • Lane CS, Chorn BT, Johnson TC (2013) Ash from the Toba supereruption in Lake Malawi shows no volcanic winter in East Africa at 75 ka. Proc Natl Acad Sci USA 110:8025–8029. doi:10.1073/pnas.1301474110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Librado P, Rozas J (2009) DnaSP ver. 5: a software for comprehensive analysis of DNA polymorphism data. Bioinform Appl Note 25:1451–1452. doi:10.1093/bioinformatics/btp187

    Article  CAS  Google Scholar 

  • Louys J (2007) Limited effect of the Quaternary’s largest super-eruption (Toba) on land mammals from Southeast Asia. Quat Sci Rev 26:3108–3117. doi:10.1016/j.quascirev.2007.09.008

    Article  Google Scholar 

  • Miller PS, Lees C, Ramono W, Purwoto A, Rubianto A, Sectionov Talukdar B, Ellis S (2015) Population viability analysis for the Sumatran rhino in Indonesia. IUCN/SSC Conservation Breeding Specialist Group, Apple Valley, MN

    Google Scholar 

  • Morales JC, Andau PM, Supriatna J, Zainuddin Z-Z, Melnick DJ (1997) Mitochondrial DNA variability and conservation genetics of the Sumatran rhinoceros. Conserv Biol 11:539–543. doi:10.1046/j.1523-1739.1997.96171.x

    Article  Google Scholar 

  • Nardelli F (2014) The last chance for the Sumatran rhinoceros? Pachyderm 55:43–53

    Google Scholar 

  • Orlando L, Leonard JA, Thenot A, Laudet V, Guerin C, Hänni C (2003) Ancient DNA analysis reveals woolly rhino evolutionary relationships. Mol Phylogenet Evol 28:485–499. doi:10.1016/S1055-7903(03)00023-X

    Article  CAS  PubMed  Google Scholar 

  • Orlando L, Ginolhac A, Zhang G, Froese D, Albrechtsen A, Stiller M, Schubert M, Cappellini E, Petersen B, Moltke I, Johnson PLF, Fumagalli M, Vilstrup JT, Raghavan M, Korneliussen T, Malaspinas A-S, Vogt J, Szklarczyk D, Kelstrup CD, Vinther J, Dolocan A, Stenderup J, Velazquez AMV, Cahill J, Rasmussen M, Wang X, Min J, Zazula GD, Seguin-Orlando A, Mortensen C, Magnussen K, Thompson JF, Weinstock J, Gregersen K, Røed KH, Eisenmann V, Rubin CJ, Miller DC, Antczak DF, Bertelsen MF, Brunak S, Al-Rasheid KAS, Ryder O, Andersson L, Mundy J, Krogh A, Gilbert MTP, Kjær K, Sicheritz-Ponten T, Jensen LJ, Olsen JV, Hofreiter M, Nielsen R, Shapiro B, Wang J, Willerslev E (2013) Recalibrating Equus evolution using the genome sequence of an early Middle Pleistocene horse. Nature 499:74–78. doi:10.1038/nature12323

    Article  CAS  PubMed  Google Scholar 

  • Parson W, Strobl C, Huber G, Zimmermann B, Gomes SM, Souto L, Fendt L, Delport R, Langit R, Wootton S, Lagace R, Irwin J (2013) Evaluation of next generation mtGenome sequencing using the Ion Torrent Personal Genome Machine (PGM). Forensic Sci Int Genet 7:543–549. doi:10.1016/j.fsigen.2013.06.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Posada D (2008) jModelTest: phylogenetic model averaging. Mol Biol Evol 25:1253–1256. doi:10.1093/molbev/msn083

    Article  CAS  PubMed  Google Scholar 

  • Prothero D, Schoch R (1989) The evolution of perissodactyls. Oxford University Press, New York

    Google Scholar 

  • Rambaut A, Drummond AJ (2007) Tracer [computer program]. http://beast.bio.ed.ac.uk/tracer

  • Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574. doi:10.1093/bioinformatics/btg180

    Article  CAS  PubMed  Google Scholar 

  • Roth TL (2003) Breeding the Sumatran rhinoceros (Dicerorhinus sumatrensis) in captivity: behavioral challenges, hormonal solutions. Horm Behav 44:31. doi:10.1016/S0018-506X(03)00068-0

    Google Scholar 

  • Ruiz-García M, Vásquez C, Pinedo-Castro MO, Sandoval S, Castellanos A, Kaston F, Thoisy B, Shostell J (2012) Phylogeography of the Mountain Tapir (Tapirus pinchaque) and the Central American Tapir (Tapirus bairdii) and the origins of the three Latin-American tapirs by means of mtCyt-B sequences. In: Anamthawat-Jónsson K (ed) Current topics in phylogenetics and phylogeography of terrestrial and aquatic systems. InTech, Rijeka, pp 83–116

    Google Scholar 

  • Ryder OA (1986) Species conservation and systematics: the dilemma of subspecies. Trends Ecol Evol 1:9–10. doi: 10.1016/0169-5347(86)90059-5

    Article  Google Scholar 

  • Sankararaman S, Mallick S, Dannemann M, Prüfer K, Kelso J, Pääbo S, Patterson N, Reich D (2014) The genomic landscape of Neanderthal ancestry in present-day humans. Nature 507:354–357. doi:10.1038/nature12961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saragusty J, Diecke S, Drukker M, Durrant B, Friedrich Ben-Nun I, Galli C, Göritz F, Hayashi K, Hermes R, Holtze S, Johnson S, Lazzari G, Loi P, Loring JF, Okita K, Renfree MB, Seet S, Voracek T, Stejskal J, Ryder OA, Hildebrandt TB (2016) Rewinding the process of mammalian extinction. Zoo Biol 35:280–292. doi:10.1002/zoo.21284

    Article  PubMed  Google Scholar 

  • Sharma R, Arora N, Goossens B, Nater A, Morf N, Salmona J, Bruford MW, Van Schaik CP, Krützen M, Chikhi L (2012) Effective population size dynamics and the demographic collapse of Bornean orangutans. PLoS ONE 7(11):e49429. doi:10.1371/journal.pone.0049429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soares P, Trejaut JA, Loo J-H, Hill C, Mormina M, Lee C-L, Chen Y-M, Hudjashov G, Forster P, Macaulay V, Bulbeck D, Oppenheimer S, Lin M, Richards MB (2008) Climate change and postglacial human dispersals in Southeast Asia. Mol Biol Evol 25:1209–1218. doi:10.1093/molbev/msn068

    Article  CAS  PubMed  Google Scholar 

  • Steiner CC, Ryder OA (2011) Molecular phylogeny and evolution of the Perissodactyla. Zool J Linnean Soc 163:1289–1303. doi:10.1111/j.1096-3642.2011.00752.x

    Article  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) Mega6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729. doi:10.1093/molbev/mst197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Strien NJ, Manullang B, Sectionov IW, Khan MKM, Sumardja E, Ellis S, Han KH, Boeadi Payne J, Bradley ME (2008) Dicerorhinus sumatrensis. The IUCN Red List of Threatened Species 2008: e.T6553A12787457

  • Vilstrup JT, Seguin-Orlando A, Stiller M, Ginolhac A, Raghavan M, Nielsen SCA, Weinstock J, Froese D, Vasiliev SK, Ovodov ND, Clary J, Helgen KM, Fleischer RC, Cooper A, Shapiro B, Orlando L (2013) Mitochondrial phylogenomics of modern and ancient equids. PLoS ONE 8(2):e55950. doi:10.1371/journal.pone.0055950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Willerslev E, Gilbert MTP, Binladen J, Ho SYW, Campos PF, Ratan A, Tomsho LP, da Fonseca RR, Sher A, Kuznetsova TV, Nowak-Kemp M, Roth TL, Miller W, Schuster SC (2009) Analysis of complete mitochondrial genomes from extinct and extant rhinoceroses reveals lack of phylogenetic resolution. BMC Evol Biol 20099:95. doi:10.1186/1471-2148-9-95

    Article  Google Scholar 

  • Woodruff DS (2010) Biogeography and conservation in Southeast Asia: how 2.7 million years of repeated environmental fluctuations affect today’s patterns and the future of the remaining refugial-phase biodiversity. Biodivers Conserv 19:919–941. doi:10.1007/s10531-010-9783-3

    Article  Google Scholar 

  • Zielinski GA, Mayewski PA, Meeker LD, Whitlow S, Twickler MS, Taylor K (1996) Potential atmospheric impact of the Toba mega-eruption ∼71,000 years ago. Geophys Res Lett 23:837–840. doi:10.1029/96GL00706

    Article  CAS  Google Scholar 

  • Zschokke S, Armbruster GFJ, Ursenbacher S, Baur B (2011) Genetic differences between the two remaining wild populations of the endangered Indian rhinoceros (Rhinoceros unicornis). Biol Conserv 144:2702–2709. doi:10.1016/j.biocon.2011.07.031

    Article  Google Scholar 

Download references

Acknowledgements

This work was possible thanks to the contribution of Julie Fronczek, Marisa Korody, and Suellen Charter generating the Sumatran rhinoceros fibroblast cell lines. Inclusion of the rhinoceros samples from Sabah, D. s. harrisoni, was made possible through BORA (Bornean Rhino Alliance) and the Leibnitz Institute of Zoo and Wildlife Medicine. We thank Alfred Roca and Jessica Brandt for helpful discussion and comments on the manuscript. Funding was obtained from an anonymous donor to San Diego Zoo Global.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cynthia C. Steiner.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Steiner, C.C., Houck, M. & Ryder, O.A. Genetic variation of complete mitochondrial genome sequences of the Sumatran rhinoceros (Dicerorhinus sumatrensis). Conserv Genet 19, 397–408 (2018). https://doi.org/10.1007/s10592-017-1011-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-017-1011-1

Keywords

Navigation