Skip to main content

Conservation genetics of an endemic and threatened amphibian (Capensibufo rosei): a leap towards establishing a genetic monitoring framework

Abstract

Given the ever-increasing anthropogenic changes to natural ecosystems, it is imperative that temporal changes in genetic diversity be monitored to help safeguard the future viability of species. Capensibufo rosei is a small, range-restricted bufonid from South Africa, believed to have experienced an enigmatic decline likely due to the suppression of natural fires and the loss of grazing animals from some areas. Without these disturbances, their habitat becomes overgrown, which might affect the characteristics of their breeding pools. Since the 1980s, four breeding sites have been lost, presumably due to loss of breeding habitat through encroachment of vegetation. Currently, there are only two known populations [Cape of Good Hope (CGH) and Silvermine nature reserves] both within Table Mountain National Park. Consequently, this species may be vulnerable to stochastic events and genetic erosion through the loss of metapopulation connectivity. To assess the genetic status of this species, genetic diversity within both populations was quantified for two time periods using 11 microsatellite markers. Despite evidence of severe population bottlenecks, both populations possess levels of diversity similar to other anurans, and Silvermine has greater diversity than CGH. A close examination of the data revealed both populations to be genetically dynamic through time, with the loss and gain of rare alleles. Both populations also experienced a slight increase in overall diversity between sampling periods. While the latter was not statistically significant, the monitoring period was perhaps too short to understand changes in diversity over time. These results will form the baseline for future monitoring to better understand this threatened and declining species and to track genetic erosion or recovery.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  • Allentoft ME, O’Brien J (2010) Global amphibian declines, loss of genetic diversity and fitness: a review. Diversity 2:47–71

    Article  Google Scholar 

  • Altwegg R, Roulin A, Kestenholz M, Jenni L (2003) Variation and covariation in survival, dispersal, and population size in barn owls Tyto alba. J Anim Ecol 72:391–399

    Article  Google Scholar 

  • Beaumont MA et al (2009) Adaptive approximate bayesian computation. Biometrika 96:983–990

    Article  Google Scholar 

  • Becker F (2014) Searching for answers to the silent decline: first estimates of survival and recruitment for the critically endangered Rose’s mountain toadlet, Capensibufo rosei. Hons. Dissertation, University of Cape Town

  • Becker FS (2017) Estimating the global population size of animals that are hard to find: the case of Rose’s mountain toadlet. M.Sc. dissertation. University of Cape Town

  • Becker F, Tolley KA, Measey GM, Altwegg R (in press) Extreme climate-induced life-history plasticity in an amphibian. Am Nat

  • Bermond G, Ciosi M, Lombaert E, Blin A, Boriani M et al (2012) Secondary contact and admixture between independently invading populations of the western corn rootworm, Diabrotica virgifera virgifera in Europe. PLoS ONE 7:e50129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Björklund M (2005) A method for adjusting allele frequencies in the case of microsatellite allele drop-out. Mol Ecol Notes 5:676–679

    Article  Google Scholar 

  • Bond WJ (1997) Functional types for predicting changes in bidoversity: a case stufy in Cape fynbos. In: Smith TM, Shugart HH, Woodward FI (eds) Plant Functional Types: their relevance to ecosystm properties and global change. Cambridge University Press, Canbridge, pp 174–194

    Google Scholar 

  • Brookfield JFY (1996) A simple new method for estimating null allele frequency from heterozygote deficiency. Mol Ecol 5:453–455

    Article  CAS  PubMed  Google Scholar 

  • Campagne P, Smouse PE, Varouchas G, Silvain JF, Leru B (2012) Comparing the van Oosterhout and Chybicki-Burczyk methods of estimating null allele frequencies for inbred populations. Mol Ecol Resour 12:975–982

    Article  CAS  PubMed  Google Scholar 

  • Channing A, Measey GJ, de Villiers AL, Turner AA, Tolley KA (2017) Taxonomy of the Capensibufo rosei group (Anura: Bufonidae) from South Africa. Zootaxa 4232:282–292

    Article  Google Scholar 

  • Chapuis M-P, Estoup A (2007) Microsatellite null alleles and estimation of population differentiation. Mol Biol Evol 24:621–631

    Article  CAS  PubMed  Google Scholar 

  • Charlesworth B, Charlesworth D (2010) Elements of evolutionary genetics. Roberts & Co., Greenwood Village

    Google Scholar 

  • Chevolot M, Ellis JR, Rijnsdorp AD, Stam WT, Olsen JL (2008) Temporal changes in allele frequencies but stable genetic diversity over the past 40 years in the Irish Sea population of thornback ray, Raja clavata. Heredity 101:120–126

    Article  CAS  PubMed  Google Scholar 

  • Chybicki IJ, Burczyk J (2009) Simultaneous estimation of null alleles and inbreeding coefficients. J Hered 100:106–113

    Article  CAS  PubMed  Google Scholar 

  • Chybicki IJ, Oleksa A, Burczyk J (2011) Increased inbreeding and strong kinship structure in Taxus baccata estimated from both AFLP and SSR data. Heredity 107:589–600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cockerham CC, Weir BS (1977) Digenic descent measures for finite populations. Genet Res 30:121–147

    Article  Google Scholar 

  • Cornuet J-M, Santos F, Beaumont MA et al (2008) Inferring population history with DIY ABC: a user-friendly\rapproach to approximate bayesian computation. Bioinformatics 24:2713–2719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cornuet J-M, Pudlo P, Veyssier J, Dehne-Garcia A, Gautier M, Leblois R, Marin J-M, Estoup A (2014) DIYABC v2.0: a software to make approximate bayesian computation inferences about population history using single nucleotide polymorphism, DNA sequence and microsatellite data. Bioinformatics 30:1187–1189

    Article  CAS  PubMed  Google Scholar 

  • Cressey ER, Measey GJ, Tolley KA (2015) Fading out of view: the enigmatic decline of Rose’s mountain toad Capensibufo rosei. Oryx 49:521–528

    Article  Google Scholar 

  • da Silva JM, Feldheim KA, Daniels RJ, Edwards S, Tolley KA (2016) Analysis of genetic diversity in Rose’s mountain toadlet (Capensibufo rosei) using novel microsatellite markers. Afr J Herpet 65:69–82

    Article  Google Scholar 

  • da Silva JM, Feldheim KA, Measey GJ, Doucette-Riise S, Daniels RJ, Chauke LF, Tolley KA (2017) Genetic diversity and differentiation of the Western Leopard Toad (Sclerophrys pantherina) based on mitochondrial and microsatellite markers. Afr J Herpet 66:25–38

    Article  Google Scholar 

  • Dakin EE, Avise JC (2004) Microsatellite null alleles in parentage analysis. Heredity 93:504–509

    Article  CAS  PubMed  Google Scholar 

  • Demandt MH (2010) Temporal changes in genetic diversity of isolated populations of perch and roach. Conserv Genet 11:249

    Article  Google Scholar 

  • Department of Environmental Affairs and Tourism (DEAT) (2014) South Africa’s Fourth National Report to the Convention on Biodiversity, March 2014, South African National Biodiversity Institute, South African Government, Pretoria

    Google Scholar 

  • Dornelas M, Magurran AE, Buckland ST, Chao A, Chazdon RL, Colwell RK, Curtis T, Gaston KJ, Gotelli NJ, Kosnik NJ, McGill B, McCune JL, Morlon H, Mumby PJ, Øvreås L, Studeny A, Vellend M (2013) Quantifying temporal change in biodiversity: challenges and opportunities. Proc R Soc Lond B 280:1–10

    Google Scholar 

  • Earl DA, vonHoldt BM (2012)) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Res 4:359–361

    Article  Google Scholar 

  • Edwards S, Tolley KA, Measey GJ (2017) Habitat characteristics influence the breeding of Rose’s dwarf mountain toadlet Capensibufo rosei (Anura: Bufonidae). Herpet J 27:287–298

    Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Excoffier L, Lischer H (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567

    Article  PubMed  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587

    CAS  PubMed  PubMed Central  Google Scholar 

  • Forsyth GG, Kruger FJ, Le Maitre DC (2010) National Veldfire risk assessment: analysis of exposure of social, economic and environmental assets to Veldfire hazards in South Africa. CSIR Report No: CSIR/NRE/ECO/ER/2010/0023/C. CSIR Natural Resources and the Environment, Stellenbosch

    Google Scholar 

  • Frankham R (2005) Genetics and extinction. Biol Conserv 126:131–140

    Article  Google Scholar 

  • Frankham R, Ballou JD, Briscoe DA (2010) Introduction to conservation genetics, 2nd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Garza JC, Williamson EG (2001) Detection of reduction in population size using data from microsatellite loci. Mol Ecol 10:305–318

    Article  CAS  PubMed  Google Scholar 

  • Gilbert KJ, Whitlock MC (2015) Evaluating methods for estimating local effective population size with and without migration. Evol Int J Org Evol 69:2154–2166

    Article  Google Scholar 

  • Grandison AGC (1980) A new genus of toad (Anura: Bufonidae) from the Republic of South Africa with remarks on its relationships. Bull Brit Mus Nat Hist (Zool) 39:293–298

    Google Scholar 

  • Green DM (2003) The ecology of extinction: population fluctuation and decline in amphibians. Biol Conserv 111:331–343

    Article  Google Scholar 

  • Guo S, Thompson E (1992) Performing the exact test of Hardy-Weinberg proportion for multiple alleles. Biometrics 48:361–372

    Article  CAS  PubMed  Google Scholar 

  • Habel JC, Schmitt T (2012) The burden of genetic diversity. Biol Conserv 147:270–274

    Article  Google Scholar 

  • Hawks J, Hunley K, Lee S-H, Wolpoff M (2000) Population bottlenecks and Pleistocene human evolution. Mol Biol Evol 17:2–22

    Article  CAS  PubMed  Google Scholar 

  • Hieb EE, Nelson DH, Morris AB (2014) Genetic monitoring reveals loss of microsatellite diversity in a breeding population of the endangered Alabama red-bellied turtle. Endang Species Res 23:253–261

    Article  Google Scholar 

  • Hoban S, Arntzen JA, Bruford MW, Godoy JA, Hoezel AR, Segelbacher G, Vilà C, Bertorelle G (2014) Comparative evaluation of potential indicators and temporal sampling protocols for monitoring genetic erosion. Evol Appl 7:984–999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holm S (1979) A simple sequential rejective multiple test procedure. Scand J Stat 6:65–70

    Google Scholar 

  • Hughes AR, Stachowicz JJ (2004) Genetic diversity enhances the resistance of a seagrass ecosystem to disturbance. Proc Nat Acad Sci 101:8998–9002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Husemann M, Zachos FE, Paxton RJ, Habel JC (2016) Effective population size in ecology and evolution. Heredity 117:1–2

    Article  Google Scholar 

  • Hutchinson WF, van Oosterhout C, Rogers SI, Carvalho GR (2003) Temporal analysis of archived samples indicates marked genetic changes in declining North Sea cod (Gadus morhua). Proc R Soc Lond B 270:2125–2132

    Article  Google Scholar 

  • Jakobssen M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23:1801–1806

    Article  Google Scholar 

  • Jordan S, Giersch JJ, Muhlfeld CC, Hotaling S, Fanning L, Tappenbeck TH, Luikart G (2016) Loss of genetic diversity and increased subdivision in an endemic alpine stonefly threatened by climate change. PLoS ONE 11:e0157386

    Article  PubMed  PubMed Central  Google Scholar 

  • Kalinowski ST (2004) Counting alleles with rarefaction: private alleles and hierarchical sampling designs. Conserv Genet 5:539–543

    Article  CAS  Google Scholar 

  • Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, Thierer T, Ashton B, Meintjes P, Drummond A (2012) Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28:1647–1649

    Article  PubMed  PubMed Central  Google Scholar 

  • Laikre L (2010) Genetic diversity is overlooked in international conservation policy implementation. Conserv Genet 11:349–354

    Article  Google Scholar 

  • Laikre L, Allendorf FW, Aroner LC, Baker CS, Gregovich DP, Hansen MM, Jackson JA, Kendall KC, Mckelvey K, Neel MC, Olivieri I, Ryman N, Schwartz MK, Bull RS, Stetz JB, Tallmon DA, Taylor BL, Vojta CD, Waller DM, Waples RS (2010) Neglect of genetic diversity in implementation of the convention on biological diversity. Conserv Biol 24:86–88

    Article  PubMed  Google Scholar 

  • Laikre L, Lundmark C, Jansson E, WennerstrÓ§m L, Edman M, SandstrÓ§m (2016) Lack of recognition of genetic biodiversity: international policy and its implementation in Baltic Sea marine protected areas. Ambio 45:661–680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lannoo MJ (2005) Amphibian declines: the conservation status of United States Species. University of California Press, Berkeley

    Book  Google Scholar 

  • Le Clerc V, Bazante F, Baril C, Guiard J, Zhang D (2005) Assessing temporal changes in genetic diversity of maize varieties using microsatellite markers. Theor Appl Genet 110:294

    Article  PubMed  Google Scholar 

  • MacManes M (2008) MacManes salt extraction protocol. Museum of Vertebrate Zoology Evolutionary Genetics Lab, Berkeley. http://mvz.berkeley.edu/egl/protocols/extraction/MacManesSaltExtraction.pdf. Accessed 12 February 2016

  • McCaffery RM, Maxell BA (2010) Decreased winter severity increases viability of a montane frog population. Proc Natl Acad Sci USA 107:8644–8649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Measey GJ (ed) (2011) Ensuring a future for South Africa’s frogs: a strategy for conservation research. SANBI Biodiversity Series 19. South African National Biodiversity Institute, Pretoria

    Google Scholar 

  • Minter LR, Burger M, Harrison JA, Braack HH, Bishop PJ, Kloepfer D (2004) Atlas and Red Data Book of the Frogs of South Africa, Lesotho and Swaziland. Smithsonian Institute, Washington, DC

    Google Scholar 

  • Mucina L, Rutherford MC (2006) The vegetation of South Africa, Lesotho and Swaziland.Strelitzia 19. South African National Biodiversity Institute, Pretoria

    Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

    Google Scholar 

  • Newell DA, Goldingay RL, Brooks LO (2013) Population recovery following decline in an Endangered stream-breeding frog (Mixophyes fleayi) from subtropical Africa. PLoS ONE 8:e58559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nielsen JL, Carpanzano C, Fountain MC, Gan CA (1997) Mitochondrial DNA and nuclear microsatellite diversity in hatchery and wild Oncorhynchus mykiss from freshwater habitats in southern California. Trans Am Fish Soc 126:397–417

    Article  CAS  Google Scholar 

  • Oliver TH, Heard MS, Isaac NJB, Roy DB, Procter D, Eigenbrod F, Freckleton R, Hector A, Orme CDL, Petchey OL, Proença V, Raffaelli D, Suttle KB, Mace GM, Martín-López B, Woodcock BA, Bullock JM (2015) Biodiversity and resilience of ecosystem functions. Trends Ecol Evol 30:673–684

    Article  PubMed  Google Scholar 

  • Paetkau D, Strobeck C (1995) The molecular basis and evolutionary history of a microsatellite null allele in bears. Mol Ecol 4:519–520

    Article  CAS  PubMed  Google Scholar 

  • Peery MZ, Kirby R, Reid BN, Stoelting R, Doucet-Bëer E, Robinson S, Vásquez-Carrillo C, Pauli JN, Palsbøll PJ (2012) Reliability of genetic bottleneck tests for detecting recent population declines. Mol Ecol 21:3403–3418

    Article  PubMed  Google Scholar 

  • Pereira HM, Ferrier S, Walters M, Geller GN, Jongman RHG, Scholes RJ, Bruford MW, Brummit N, Butchart SHM, Cardoso AC, Coops NC, Dulloo E, Faith DP, Freyhof J, Gregory RD, Heip C, HÓ§ft R, Hurtt G, Jetz W, Karp WS, McGeoch MA, Obura D, Onoda Y, Pettorelli N, Reyers B, Sayre R, Scharlemann JPW, Stuart SN, Turak E, Walpole M, Wegmann M (2013) Essential biodiversity variables. Science 339:277–278

    Article  CAS  PubMed  Google Scholar 

  • Pertoldi C, Bijlsma R, Loeschcke V (2007) Conservation genetics in a globally changing environment: present problems, paradoxes and future challenges. Biodivers Conserv 16:4147–4163

    Article  Google Scholar 

  • Potvin DA, Parris KM, Smith Date KL, Keely CC, Bray RD, Hale J, Hunjan S, Austin JJ, Melville J (2016) Genetic erosion and escalating extinction risk in frogs with increasing wildlife frequency. J App Ecol. doi:10.1111/1365-2664.12809

    Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Raymond M, Rousset F (1995) GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249

    Article  Google Scholar 

  • Reusch TBH, Ehlers A, Hämmerli A, Worm B (2005) Ecosystem recovery after climatic extremes enhanced by genotypic diversity. Proc Nat Acad Sci USA 102:2826–2831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rice WR (1989) Analyzing tables of statistical tests. Evol Int J Org Evol 43:223–225

    Article  Google Scholar 

  • Rodrigáñez J, Barragán C, Alves E, Gortázar C, Toro MA, Silió (2008) Genetic diversity and allelic richness in Spanish wild and domestic pig population estimated from microsatellite markers. Span J Agric Res 6:107–115

    Article  Google Scholar 

  • Roger F, Godhe A, Gamfeldt L (2012) Genetic diversity and ecosystem functioning in the face of multiple stressors. PLoS ONE 7:e45007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roques S, Duchesne P, Bernatchez L (1999) Potential of microsatellites for individual assignment: the North Atlantic redfish (genus Sebastes) species complex as a case study. Mol Ecol 8:1703–1717

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg NA (2004) Distruct: a program for the graphical display of population structure. Mol Ecol Notes 4:137–138

    Article  Google Scholar 

  • Roth S, Jehle R (2016) High genetic diversity of common toad (Bufo bufo) populations under strong natural fragmentation on a Northern archipelago. Ecol Evol 6:1626–1636

    Article  PubMed  PubMed Central  Google Scholar 

  • Rousset F (2008) Genepop’007: a complete reimplementation of the Genepop software for Windows and Linux. Mol Ecol Resour 8:103–106

    Article  PubMed  Google Scholar 

  • Schwartz MK, Luikart G, Waples RS (2007) Genetic monitoring as a promising tool for conservation and management. Trends Ecol Evol 22:25–33

    Article  PubMed  Google Scholar 

  • Shaffer ML (1981) Minimum population sizes for species conservation. Bioscience 31:131–134

    Article  Google Scholar 

  • Skead CJ (1980) Historical mammal incidence in the Cape Province, vol 1. Department of Nature and Environmental Conservation, Cape Town

    Google Scholar 

  • Slatkin M (1995) A measure of population subdivision based on microsatellite allele frequencies. Genetics 139:457–462

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sork VL, Davis FW, Smouse PE, Apsit VJ, Dyer RJ, Fernandez-M JF, Kuhn B (2002) Pollen movement in declining populations of California Valley oak, Quercus lobata: where have all the fathers gone? Mol Ecol 11:1657–1668

    Article  CAS  PubMed  Google Scholar 

  • South African Frog Re-assessment Group (SA-FRoG), IUCN SSC Amphibian Specialist Group (2010) Capensibufo rosei. The IUCN Red List of Threatened Species 2010: e.T3776A10070549. http://dx.doi.org/10.2305/IUCN.UK.2010-3.RLTS.T3776A10070549.en. Accessed 21 November 2016

  • Spielman D, Brook BW, Frankham R (2004) Most species are not driven to extinction before genetic factors impact them. Proc Nat Acad Sci USA 101:15261–15264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szpiech ZA, Jakobsson M, Rosenberg NA (2008) ADZE: a rarefaction approach for counting alleles private to combinations of populations. Bioinformatics 24:2498–2504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tittensor DP, Walpole M, Hill SLL et al (2014) A mid-term analysis of progress toward international biodiversity targets. Science 346:241–244

    Article  CAS  PubMed  Google Scholar 

  • Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) Micro-checker: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538

    Article  Google Scholar 

  • Walpole M, Almond REA, Besançon C, Butchart SHM, Campbell-Lendrum D, Carr GM, Collen B, Collette L, Davidson NC, Dulloo E, Fazel AM, Galloway JN, Gill M, Goverse T, Hockings M, Leaman DJ, Morgan DHW, Revenga C, Rickwood CJ, Schutyser F, Simons S, Stattersfield AJ, Tyrrell TD, Vié JC, Zimsky M (2009) Tracking progress toward the 2010 biodiversity target and beyond. Science 325:1503–1504

    Article  PubMed  Google Scholar 

  • Wang J, Whitlock MC, Anderson EC et al (2003) Estimating effective population size and migration rates from genetic samples over space and time. Genetics 163:429–446

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Santiago E, Caballero A (2016) Prediction and estimation of effective population size. Heredity 117:1–14

    Article  Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population-structure. Evol Int J Org Evol 38:1358–1370

    CAS  Google Scholar 

  • Wilkinson JW, Beebee TJC, Giffiths RA (2007) Conservation genetics of an island toad: Bufo bufo in Jersey. Herpetol J 17:192–198

    Google Scholar 

  • Willoughby JR, Sundaram M, Wijayawardena BK, Kimble SJA, Ji Y, Fernandez NB, Antonides JD, Lamb MC, Marra NC, DeWoody JA (2015) The reduction of genetic diversity in threatened vertebrates and new recommendations regarding IUCN conservation rankings. Biol Conserv 191:495–503

    Article  Google Scholar 

  • Wright S (1931) Evolution in Mendelian populations. Genetics 16:97–159

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu X-B, Hu Y-L (2010) Genetic diversity and molecular differentiation of Chinese toad based on microsatellite markers. Mol Biol Rep 37:2379–2386

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded the National Research Foundation (NRF) of South Africa (NRF Incentive Funds IPRR: IFR2011040500035) and by the South African National Biodiversity Institute (National Monitoring Framework). We are grateful to South African National Parks (Table Mountain National Park), J. Measey and F. Becker for support during the collection of samples, J. Wang for his assistance with the program MLNE, as well as A. R. Hoezel for his input and feedback with our DIYABC analysis. Lastly, we thank two anonymous reviewers for their comments, who helped improve the manuscript. This work was carried out under South African National Biodiversity Institute Ethics Clearance (No. 003/2011), Research Agreement with South African National Parks, and Western Cape provincial permits (CapeNature: 0056-AA008-00021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jessica M. da Silva.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 766 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

da Silva, J.M., Tolley, K.A. Conservation genetics of an endemic and threatened amphibian (Capensibufo rosei): a leap towards establishing a genetic monitoring framework. Conserv Genet 19, 349–363 (2018). https://doi.org/10.1007/s10592-017-1008-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-017-1008-9

Keywords

  • Africa
  • Bufonidae
  • Genetic monitoring
  • Rose’s mountain toadlet