Conservation Genetics

, Volume 19, Issue 1, pp 193–205 | Cite as

Floreana Island re-colonization potential of the Galápagos short-eared owl (Asio flammeus galapagoensis)

  • Sarah SchulwitzEmail author
  • Paula A. Castaño
  • Denis Mosquera
  • Milton Chugcho
  • Karl J. Campbell
  • Jeff A. JohnsonEmail author
Research Article


Non-native invasive species threaten Galápagos’ endemic biodiversity, and increasing efforts are underway to protect its species from further harm. One such project is focused on the eradication of invasive rodents using rodenticide bait on Floreana, the archipelago’s sixth largest island. Short-eared owls (Asio flammeus galapagoensis) that consume poisoned rodents will, therefore, be at risk of secondary poisoning. If negatively impacted, it is not known to what degree the Floreana Island short-earned owl population is isolated, and whether potential re-colonization exists from its closest neighboring large population on Santa Cruz. Based on eight microsatellite loci and mtDNA control region sequence data from museum and contemporary samples, the short-eared owl populations on Floreana and Santa Cruz are not isolated from each other. However, gene flow is asymmetric from Floreana to Santa Cruz and not in the opposite direction. Morphometric data, including tarsus and bill size, and behavioral observations corroborate the genetic results and suggest that the Floreana population may possess unique traits compared to neighboring populations. For example, Floreana short-eared owls are more crepuscular than neighboring islands, which are predominately nocturnal, and were also non-responsive to inter-island call back recordings. Therefore, these results have important management implications concerning short-eared owl persistence on Floreana following rodenticide application. We recommend that managers implement additional precautions to protect the short-eared owl population until the risk of secondary poisoning has passed such as maintaining individuals in captivity. This study provides no evidence to suggest that short-eared owls are likely to disperse from Floreana’s closest large population on Santa Cruz if the local population is negatively impacted by rodenticide exposure, and the observed morphological and behavioral traits argue against translocating owls between islands.


Galápagos Short-eared Owl Asio flammeus Floreana Island Santa Cruz Conservation Galápagos 



We thank the Galápagos National Park Directorate (GNPD) for granting the Science permits (PC-24-14 and PC-24-15), for assisting in collecting the samples utilized on this study, and for providing the appropriate support. Thanks also to Galapagos National Park guards Marlon Ramon, Anibal Altamirano, Andrea Loyola, Fidelino Gaona, and Simon Villamar. Many thanks to Francesca Cunninghame for helping with sample/data collection, and to Julia Ponder for providing information and feedback on appropriate short-eared owl trapping methods. This project was financed by Island Conservation and The Leona M. and Harry B. Helmsley Charitable Trust. We thank the California Academy of Sciences, American Museum of Natural History, and the Museum of Comparative Zoology for providing museum samples.

Supplementary material

10592_2017_1007_MOESM1_ESM.pdf (313 kb)
Supplementary material 1 (PDF 314 KB)


  1. Arbogast BS, Drovetski S, Curry R, Boag PT, Seutin G, Grant PR, Grant BR, Anderson DJ (2006) The origin and diversification of Galápagos mockingbirds. Evol Int J org Evol 60:370–382CrossRefGoogle Scholar
  2. Bandelt HJ, Forster P, Röhl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37–48CrossRefPubMedGoogle Scholar
  3. Barrowclough GF, Gutiérrez RJ, Groth JG (1999) Phylogeography of spotted owl (Strix occidentalis) populations based on mitochondrial DNA sequences: gene flow, genetic structure, and a novel biogeographic pattern. Evol Int J org Evol 53:919–931Google Scholar
  4. Beebe CW (1926) Galápagos: world’s end. Putnam, New YorkGoogle Scholar
  5. Bellard C, Cassey P, Blackburn TM (2016) Alien species as a driver of recent extinctions. Biol Lett 12:20150623CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bollmer JL, Sanchez T, Cannon MD, Sanchez D, Cannon B, Bednarz JC, de Vries T, Struve MS, Parker PG (2003) Variation in morphology and mating system among island populations of Galápagos hawks. Condor 105:428–438CrossRefGoogle Scholar
  7. Bollmer JL, Whiteman NK, Cannon MD, Bednarz JC, Vries TD, Parker PG (2005) Population genetics of the Galápagos hawk (Buteo galapagoensis): genetic monomorphism within isolated populations. Auk 122:1210–1224CrossRefGoogle Scholar
  8. Bollmer JL, Kimball RT, Whiteman NK, Sarasola JH, Parker PG (2006) Phylogeography of the Galápagos hawk (Buteo galapagoensis): a recent arrival to the Galápagos Islands. Mol Phylogenet Evol 39:237–247CrossRefPubMedGoogle Scholar
  9. Campbell KJ, Carrion V, Sevilla C (2013) Increasing the scale of successful invasive rodent eradications in the Galápagos Islands. Galapagos Report 2011–2012. GNPS, GCREG, CDF and GC, Puerto Ayora, Galapagos, Ecuador, pp 194–198Google Scholar
  10. Campbell KJ, Beek J, Eason CT, Glen AS, Godwin J, Gould F, Holmes ND, Howald GR, Madden FM, Ponder JB, Threadgill DW, Wegmann A, Baxter GS (2015) The next generation of rodent eradications: innovative technologies and tools to improve species specificity and increase their feasibility on islands. Biol Conserv 185:47–58CrossRefGoogle Scholar
  11. Carrion V, Donlan CJ, Campbell K, Lavoie C, Cruz F (2007) Feral donkey (Equus asinus) eradications in the Galápagos. Biodivers Conserv 16:437–445CrossRefGoogle Scholar
  12. Carrion V, Donlan CJ, Campbell KJ, Lavoie C, Cruz F (2011) Archipelago-wide island restoration in the Galápagos Islands: reducing costs of invasive mammal eradication programs and reinvasion risk. PLoS ONE 6:e18835CrossRefPubMedPubMedCentralGoogle Scholar
  13. Clark RJ (1975) A field study of the Short-eared Owl, Asio Flammeus (Pontoppidan). N Am Wildl Monogr 47:3–67Google Scholar
  14. Cruz F, Donlan J, Campbell K, Carrion V (2005) Conservation action in the Galàpagos: feral pig (Sus scrofa) eradication from Santiago Island. Biol Conserv 121:473–478CrossRefGoogle Scholar
  15. De Vries T (1973) The Galápagos hawk, an eco-geographical study with special reference to its systematic position. Phd Thesis. VU, Amsterdam, NetherlandsGoogle Scholar
  16. De Groot R (1983) Origin, status and ecology of the owls in Galápagos. Ardea 71:167–182Google Scholar
  17. Delaney KS, Riley SP, Fisher RN (2010) A rapid, strong, convergent genetic response to urban habitat fragmentation in four divergent and widespread vertebrates. PLoS ONE 5:e12767CrossRefPubMedPubMedCentralGoogle Scholar
  18. Dial CR, Talbot SL, Sage GK, Seidensticker MT, Holt DW (2012) Cross-species amplification of microsatellite markers in the Great Horned Owl Bubo virginianus, Short-eared Owl Asio flammeus and Snowy Owl B. scandiacus for use in population genetics, individualidentification and parentage studies. J Yamashina Instit Ornithol 44:1–12CrossRefGoogle Scholar
  19. Earl DA, vonHoldt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Res 4:359–361CrossRefGoogle Scholar
  20. Ehrenfeld JG (2010) Ecosystem consequences of biological invasions. Annu Rev Ecol Evol S 41:59–80CrossRefGoogle Scholar
  21. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620CrossRefPubMedGoogle Scholar
  22. Excoffier L, Laval G, Schneider S (2005) Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol Bioinform Online 1:47–50CrossRefGoogle Scholar
  23. Farrington HL, Lawson LP, Clark CM, Petren K (2014) The evolutionary history of Darwin’s finches: speciation, gene flow, and introgression in a fragmented landscape. Evol Int J org Evol 68:2932–2944CrossRefGoogle Scholar
  24. Faubet P, Waples RS, Gaggiotti OE (2007) Evaluating the performance of a multilocus Bayesian method for the estimation of migration rates. Mol Ecol 16:1149–1166CrossRefPubMedGoogle Scholar
  25. Fisher P, Campbell K (2015) Proposed aerial application of rodenticide bait containing brodifacoum on Floreana, Galápagos Islands: assessment of risks to non-target wildlife. Unpublished report LC2152. Landcare Research. Lincoln, p 39Google Scholar
  26. Garrido OH (2007) Subespecie nueva de Asio dominguensis para Cuba, con comentarios sobre Asio flammeus. (Aves: Strigidae) Solenodon 6:70–78Google Scholar
  27. Glen AS, Atkinson R, Campbell KJ, Hagen E, Holmes ND, Keitt BS, Parkes JP, Saunders A, Sawyer J, Torres H (2013) Eradicating multiple invasive species on inhabited islands: the next big step in island restoration? Biol Invasions 15:2589–2603CrossRefGoogle Scholar
  28. Goodale E, Podos J (2010) Persistence of song types in Darwin’s finches, Geospiza fortis. Biol Lett 14:rsbl20100165Google Scholar
  29. Goudet J (1995) FSAT (version 1.2): a computer program to calculate F-statistics. J Hered 86:485–486CrossRefGoogle Scholar
  30. Grant BR, Grant PR (2002) Simulating secondary contact in allopatric speciation: an empirical test of premating isolation. Biol J Linn Soc 76:545–556CrossRefGoogle Scholar
  31. Grant PR, Smith JNM, Grant BR, Abbott IJ, Abbott LK (1975) Finch numbers, owl predation and plant dispersal on Isla Daphne Major, Galápagos. Oecologia 19:239–257CrossRefPubMedGoogle Scholar
  32. Grant PR, Grant BR, Petren K (2000) The allopatric phase of speciation: the sharp-beaked ground finch (Geospiza difficilis) on the Galápagos islands. Biol J Linn Soc 69:287–317CrossRefGoogle Scholar
  33. Hall MI, Ross CF (2007) Eye shape and activity pattern in birds. J Zool 271:437–444CrossRefGoogle Scholar
  34. Harris MP (1973) The Galápagos avifauna. Condor 75:265–278CrossRefGoogle Scholar
  35. Hoeck PEA, Bollmer JL, Parker PG, Keller LF (2010) Differentiation with drift: a spatio-temporal genetic analysis of Galápagos mockingbird populations (Mimus spp.). Philos Trans R Soc B 365:1127–1138CrossRefGoogle Scholar
  36. Hoffman W, Woolfenden GE, Smith PW (1999) Antillean short-eared owls invade southern Florida. Wilson J Ornithol 111:302–313Google Scholar
  37. Höglund J, Johansson T, Beintema A, Schekkerman H (2009) Phylogeography of the Black-tailed Godwit Limosa limosa: substructuring revealed by mtDNA control region sequences. J Ornithol 150:45–53CrossRefGoogle Scholar
  38. Hubisz MJ, Falush D, Stephens M, Pritchard JK (2009) Inferring weak population structure with the assistance of sample group information. Mol Ecol Res 9:1322–1332CrossRefGoogle Scholar
  39. Island Conservation (2013) Floreana Island Ecological Restoration: Rodent and Cat eradication feasibility Analysis version 6.0. Island Conservation, Santa Cruz, p. 85Google Scholar
  40. Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23:1801–1806CrossRefPubMedGoogle Scholar
  41. Johnsgard P (1988) North American Owls: biology and natural history. Paul Johnsgard Collection. Paper 46Google Scholar
  42. Johnson JA, Toepfer J, Dunn PO (2003) Contrasting patterns of mitochondrial and microsatellite population structure in fragmented populations of greater prairie-chickens. Mol Ecol 12:3335–3347CrossRefPubMedGoogle Scholar
  43. Johnson JA, Burnham KK, Burnham WA, Mindell DP (2007) Genetic structure among continental and island populations of gyrfalcons. Mol Ecol 16:3145–3160CrossRefPubMedGoogle Scholar
  44. Jones HP, Holmes N, Butchart SHM, Tershy BR, Kappes PJ, Corkery I, Aguirre-Muñoz A, Armstrong DP, Bonnaud E, Burbidge AA, Campbell K, Courchamp F, Cowan P, Cuthbert RJ, Ebbert S, Genovesi P, Howald GR, Keitt BS, Kress SW, Miskelly CM, Oppel S, Poncet S, Rauzon MJ, Rocamora G, Russell JC, Samaniego-Herrera A, Seddon PJ, Spatz DR, Towns DR, Croll DA (2016) Invasive mammal eradication on islands results in substantial conservation gains. Proc Natl Acad Sci 113:4033–4038CrossRefPubMedPubMedCentralGoogle Scholar
  45. Klein A, Horsburgh GJ, Kuepper C, Major A, Lee PL, Hoffmann G, Matics R, Dawson DA (2009) Microsatellite markers characterized in the Barn Owl (Tyto alba) and of high utility in other owls (Strigiformes: AVES). Mol Ecol Res 9:1512–1519CrossRefGoogle Scholar
  46. König C, Weick F (2008) Owls of the world second edition. Yale University Press, New Haven and LondonGoogle Scholar
  47. Koressaar T, Remm M (2007) Enhancements and modifications of primer design program Primer3. Bioinformatics 23:1289–1291CrossRefPubMedGoogle Scholar
  48. Leberg PL (2002) Estimating allelic richness: effects of sample size and bottlenecks. Mol Ecol 11:2445–2449CrossRefPubMedGoogle Scholar
  49. Lerner HRL, Meyer M, James HF, Hofreiter M, Fleischer RC (2011) Multilocus resolution of phylogeny and timescale in the extant adaptive radiation of hawaiian honeycreepers. Curr Biol 21:1838–1844CrossRefPubMedGoogle Scholar
  50. Lewis PO, Zaykin D (2001) Genetic data analysis: computer program for the analysis of allelic data. Version 1.0 (d16c); 2001. Free program distributed by the authors over the Internet from
  51. Lindsay DL, Barr KR, Lance RF, Tweddale SA, Hayden TJ, Leberg PL (2008) Habitat fragmentation and genetic diversity of an endangered, migratory songbird, the golden-cheeked warbler (Dendroica chrysoparia). Mol Ecol 17:2122–2133CrossRefPubMedGoogle Scholar
  52. Lisney TJ, Iwaniuk AN, Bandet MV, Wylie DR (2012) Eye shape and retinal topography in owls (Aves: Strigiformes). Brain Behav Evol 79:218–236CrossRefPubMedGoogle Scholar
  53. Meirmans PG (2014) Nonconvergence in Bayesian estimation of migration rates. Mol Ecol Res 14:726–733CrossRefGoogle Scholar
  54. Nicholls JA, Austin JJ (2005) Phylogeography of an east Australian wet-forest bird, the satin bowerbird (Ptilonorhynchus violaceus), derived from mtDNA, and its relationship to morphology. Mol Ecol 14:1485–1496CrossRefPubMedGoogle Scholar
  55. Pellegrino I, Negri A, Cucco M, Mucci N, Pavia M, Šálek M, Boano G, Randi FE (2014) Phylogeography and Pleistocene refugia of the Little Owl Athene noctua inferred from mtDNA sequence data. Ibis 156:639–657CrossRefGoogle Scholar
  56. Phillips RB, Wiedenfeld DA, Snell HL (2012) Current status of alien vertebrates in the Galápagos Islands: invasion history, distribution, potential impacts. Biol Invasions 14:461–480CrossRefGoogle Scholar
  57. Podos J (2007) Discrimination of geographical song variants by Darwin’s finches. Animal Behav 73:833–844CrossRefGoogle Scholar
  58. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedPubMedCentralGoogle Scholar
  59. Ratcliffe LM, Grant PR III (1985) Species recognition in Darwin’s finches (Geospiza, Gould). Male responses to playback of different song types, dialects and heterospecific songs. Anim Behav 33:290–307CrossRefGoogle Scholar
  60. Rice WR (1989) Analyzing tables of statistical tests. Evol Int J org Evol 43:223–225CrossRefGoogle Scholar
  61. Rosenberg NA (2004) DISTRUCT: a program for the graphical display of population structure. Mol Ecol Notes 4:137–138CrossRefGoogle Scholar
  62. Rueda D, Campbell KJ, Fisher P, Cunninghame F, Ponder J (2016) Biologically significant residual persistence of brodifacoum in reptiles following invasive rodent eradication, Galapagos Islands, Ecuador Conserv Evid 13:38Google Scholar
  63. Russell JC, Holmes ND (2015) Tropical island conservation: Rat eradication for species recovery. Biol Conserv 185:1–7CrossRefGoogle Scholar
  64. Santiago-Alarcon D, Tanksley SM, Parker PG (2006) Morphological variation and genetic structure of Galápagos Dove (Zenaida galapagoensis) populations: issues in conservation for the Galápagos bird fauna. Wilson J Ornithol 118:194–207CrossRefGoogle Scholar
  65. Segelbacher G, Höglund J, Storch I (2003) From connectivity to isolation: genetic consequences of population fragmentation in capercaillie across Europe. Mol Ecol 12:1773–1780CrossRefPubMedGoogle Scholar
  66. Seutin G, White BN, Boag PT (1991) Preservation of avian blood and tissue samples for DNA analyses. Can J Zool 69:82–90CrossRefGoogle Scholar
  67. Shapiro B, Hofrieter M (2014) Ancient DNA: methods and protocols. Methods in molecular biology. Springer, BerlinGoogle Scholar
  68. Sorenson MD, Ast JC, Dimcheff DE, Yuri T, Mindell DP (1999) Primers for a PCR-based approach to mitochondrial genome sequencing in birds and other vertebrates. Mol Phylogenet Evol 12:105–114CrossRefPubMedGoogle Scholar
  69. Steadman DW (1986) Holocene vertebrate fossils from Isla Floreana, Galápagos. Smithsonian Institution Press, Washington, DCGoogle Scholar
  70. Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526PubMedGoogle Scholar
  71. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739CrossRefPubMedPubMedCentralGoogle Scholar
  72. Untergrasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, Rozen SG (2012) Primer3—new capabilities and interfaces. Nucleic Acids Res 40:e115CrossRefGoogle Scholar
  73. Ursenbacher S, Carlsson M, Helfer V, Tegelström H, Fumagalli L (2006) Phylogeography and Pleistocene refugia of the adder (Vipera berus) as inferred from mitochondrial DNA sequence data. Mol Ecol 15:3425–3437CrossRefPubMedGoogle Scholar
  74. Vitousek PM, D’Antonio CM, Loope LL, Rejmanek M, Westbrooks R (1997) Introduced species: a significant component of human-caused global change. New Zeal J Ecol 21:1–16Google Scholar
  75. Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evol Int J org Evol 38:1358–1370Google Scholar
  76. Wiggins DA, Holt DW, Leasure SM (2006) Short-eared Owl (Asio flammeus), The Birds of North America Online Poole A (Ed). Ithaca: Cornell Lab of Ornithology; Retrieved from the Birds of North America Online: doi: 10.2173/bna.62
  77. Wilson GA, Rannala B (2003) Bayesian inference of recent migration rates using multilocus genotypes. Genetics 163:1177–1191PubMedPubMedCentralGoogle Scholar
  78. Zhang Y, Song T, Pan T, Sun X, Sun Z, Qian L, Zhang B (2015) Complete sequence and gene organization of the mitochondrial genome of Asio flammeus (Strigiformes, strigidae). Mitochondr DNA Part A: 27:2665–2667Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Sarah Schulwitz
    • 1
    • 6
    Email author
  • Paula A. Castaño
    • 2
  • Denis Mosquera
    • 3
  • Milton Chugcho
    • 4
  • Karl J. Campbell
    • 2
    • 5
  • Jeff A. Johnson
    • 1
    Email author
  1. 1.Department of Biological Sciences, Institute of Applied SciencesUniversity of North TexasDentonUSA
  2. 2.Island ConservationPuerto AyoraEcuador
  3. 3.Department of Behavioural BiologyUniversity of ViennaViennaAustria
  4. 4.Floreana Island Technical OfficeGalápagos National Park DirectoratePuerto Velasco IbarraEcuador
  5. 5.School of Geography, Planning & Environmental ManagementThe University of QueenslandSt LuciaAustralia
  6. 6.The Peregrine FundBoiseUSA

Personalised recommendations