Conservation Genetics

, Volume 19, Issue 2, pp 323–336 | Cite as

Effect of landscape features on genetic structure of the goitered gazelle (Gazella subgutturosa) in Central Iran

  • Rasoul Khosravi
  • Mahmoud-Reza Hemami
  • Mansoureh Malekian
  • Teresa Luísa Silva
  • Hamid-Reza Rezaei
  • José Carlos Brito
Research Article


The populations of goitered gazelle suffered significant decline due to natural and anthropogenic factors over the last century. Investigating the effects of barriers on gene flow among the remaining populations is vital for conservation planning. Here we adopted a landscape genetics approach to evaluate the genetic structure of the goitered gazelle in Central Iran and the effects of landscape features on gene flow using 15 polymorphic microsatellite loci. Spatial autocorrelation, isolation by distance (IBD) and isolation by resistance (IBR) models were used to elucidate the effects of landscape features on the genetic structure. Ecological modeling was used to construct landscape permeability and resistance map using 12 ecogeographical variables. Bayesian algorithms revealed three genetically homogeneous groups and restricted dispersal pattern in the six populations. The IBD and spatial autocorrelation revealed a pattern of decreasing relatedness with increasing distance. The distribution of potential habitats was strongly correlated with bioclimatic factors, vegetation type, and elevation. Resistance distances and graph theory were significantly related with variation in genetic structure, suggesting that gazelles are affected by landscape composition. The IBD showed greater impact on genetic structure than IBR. The Mantel and partial Mantel tests indicated low but non-significant effects of anthropogenic barriers on observed genetic structure. We concluded that a combination of geographic distance, landscape resistance, and anthropogenic factors are affecting the genetic structure and gene flow of populations. Future road construction might impede connectivity and gene exchange of populations. Conservation measures on this vulnerable species should consider some isolated population as separate management units.


Gene flow Graph theory Isolation by distance Landscape genetics Resistance distance Spatial autocorrelation 



We are grateful to Isfahan, Yazd and Kerman provincial DOE for permission to enter to PAs. This research was financially supported by the Iranian National Science Foundation (Project Number 92026483), by Fundação para a Ciência e Tecnologia (FCT: PTDC/BIA-BIC/2903/2012), and by FEDER funds through the Operational Programme for Competitiveness Factors - COMPETE (FCOMP-01-0124-FEDER-028276). Individual support to TLS and JCB was given by FCT (SFRH/BD/73680/2010 and IF/459/2013).

Supplementary material

10592_2017_1002_MOESM1_ESM.docx (783 kb)
Supplementary material 1 (DOCX 782 KB)


  1. Adams RV, Burg TM (2015) Gene flow of a forest-dependent bird across a fragmented landscape. PLoS ONE 10:e0140938CrossRefPubMedPubMedCentralGoogle Scholar
  2. Allentoft ME, O’Brien J (2010) Global amphibian declines, loss of genetic diversity and fitness: a review. Diversity 2:47–71CrossRefGoogle Scholar
  3. Arctander P, Kat PW, Siegismund HR (1996) Extreme genetic differences among populations of grant’s gazelle, gazella granti, in Kenya. Heredity 76:465–475CrossRefPubMedGoogle Scholar
  4. Beja-Pereira A, Zeyl E, Ouragh L et al (2004) Twentypoly morphic microsatellites in two of North Africa’s most threatened ungulates: Gazella dorcas and Ammotragus lervia (Bovidae, Artiodactyla). Mol Ecol Notes 4:452–455CrossRefGoogle Scholar
  5. Bohonak AJ (2002) IBD (Isolation by distance): a program for analyses of isolation by distance. J Hered 93:153–154CrossRefPubMedGoogle Scholar
  6. Chapuis MP, Estoup A (2007) Microsatellite null alleles and estimation of population differentiation. Mol Biol Evol 24:621–631CrossRefPubMedGoogle Scholar
  7. Coltman DW, Pilkington JG, Smith JA et al (1999) Parasite-mediated selection against inbred soay sheep in a free-living, island population. Evol Int J Org Evol 53:1259–1267Google Scholar
  8. Coulon A, Guillot G, Cosson JF, Angibault JMA, Aulagnier S, Cargnelutti B, Galan M, Hewison AJM (2006) Genetic structure is influenced by landscape features: empirical evidence from a roe deer population. Mol Ecol 15:1669–1679CrossRefPubMedGoogle Scholar
  9. Di Stasio L (2001) Panels of markers for parentage verification tested at the 2001/02 ISAG Comparison test, ISAG Standing Committee on “Applied Genetics in Sheep and Goats” ISAG Standing CommitteeGoogle Scholar
  10. Dixon P (2003) Vegan, a package of R functions for community ecology. J Veg Sci 14:927–930CrossRefGoogle Scholar
  11. Duo H, Na L, Hong Y et al (2015) Genetic diversity of Przewalski, s gazelle using noninvasive DNA and its implication for conservation. Afr J Biotechnol 14:1107–1113CrossRefGoogle Scholar
  12. Durmuş M (2010) Determination of home range size and habitat selection of gazelles (Gazella subgutturosa) by GPS telemetry in Şanlıurfa. MSc. Middle East Technical University, AnkaraGoogle Scholar
  13. Earl DA, vonHoldt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361.CrossRefGoogle Scholar
  14. Epps CW, Palsbøll PJ, Wehausen JD et al (2005) Highways block gene flow and cause a rapid decline in genetic diversity of desert bighorn sheep. Ecol Lett 8:1029–1038CrossRefGoogle Scholar
  15. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620CrossRefPubMedGoogle Scholar
  16. Farahmand M (2002) An investigation on factors affecting ungulate distribution in Kolah Qazy National Park. Master thesis, Faculty of Natural Resources, University of Tehran, TehranGoogle Scholar
  17. Flint LE, Flint AL (2012) Downscaling future climate scenarios to fine scales for hydrologic and ecological modeling and analysis. Ecol Process 12:123–140Google Scholar
  18. Frankham R, Ballou JD, Briscoe DA (2010) Introduction to conservation genetics. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  19. Furlan E, Stoklosa J, Griffiths J (2012) Small population size and extremely low levels of genetic diversity in island populations of the platypus, Ornithorhynchus anatinus. Ecol Evol 2:844–857CrossRefPubMedPubMedCentralGoogle Scholar
  20. Galarza JA, Sanchez-Fernandez B, Fandos P et al (2015) The genetic landscape of the iberian red deer (Cervus elaphus hispanicus) after 30 years of big-game hunting in Southern Spain. J Wildl Manag 79:500–504CrossRefGoogle Scholar
  21. Garza JC, Williamson EG (2001) Detection of reduction in population size using data from microsatellite loci. Mol Ecol 10:305–318CrossRefPubMedGoogle Scholar
  22. Geiser C, Ray N, Lehmann A et al (2013) Unravelling landscape variables with multiple approaches to overcome scarce species knowledge: a landscape genetic study of the slow worm. Conserv Genet 14:783–794CrossRefGoogle Scholar
  23. Girod C, Vitalis R, Leblois R, Freville H (2011) Inferring population decline and expansion from microsatellite data: a simulation-based evaluation of the ms var method. Genetics 188:165–179CrossRefPubMedPubMedCentralGoogle Scholar
  24. Godinho R, Abaigar T, Lopes S et al (2012) Conservation genetics of the endangered Dorcas gazelle (Gazella dorcas spp.) in Northwestern Africa. Conserv Genet 13:1003–1015CrossRefGoogle Scholar
  25. Goudet J (2001) FSTAT, A program to estimate and test gene diversities and fixation indices. Version Available at:
  26. Guillot G (2008) Inference of structure in subdivided populations at low levels of genetic di_erentiation. The correlated allele frequencies model revisited. Bioinformatics 24:2222–2228CrossRefPubMedGoogle Scholar
  27. Guillot G, Mortier F, Estoup A (2005) GENELAND: a computer package for landscape genetics. Mol Ecol Notes 5:712–715CrossRefGoogle Scholar
  28. Hall TA (1999) BIOEDIT: a user-friendly biological sequence alignment edi- tor and analysis program for Windows 95/98/NT. Nucl Acids Sympos Ser 41:95–98Google Scholar
  29. Hayatgheib D, Karami M, Farahmand H et al (2011) Morphological study and comparison of western and eastern goitered gazelle (Gazella subgutturosa: Gueldenstaedt, 1780) Populations in Iran. Int J Environ Res 5:225–232Google Scholar
  30. Hemami MR, Groves C (2001) North Africa, the Middle East, and Asia, In: Mallon DP, Kingswood SC (ed). Antelopes. part 4. global survey and regional action plans. SSC, Antelope Specialist Group.IUCN, Cambridge, pp 114–118Google Scholar
  31. Heptner VG, Nasimovich AA, Bannikov AG (1961) Persian gazelle. In: Heptner VG (ed) Mammals of the Soviet Union. Ungulates. High School press, Moscow, pp 423–440Google Scholar
  32. Jamieson IG, Grueber CE, Waters JM, Gleeson DM (2008) Managing genetic diversity in threatened populations: a New Zealand Perspective. New Zeal J Ecol 32:130–137Google Scholar
  33. Kappes SM, Keele JW, Stone RT et al (1997) A second generation map of the bovine genome. Genome Res 7:235–249CrossRefPubMedGoogle Scholar
  34. Karami M, Hemami MR, Groves CP (2002) Taxonomic, distributional and ecological data on gazelles in Iran. Zool Middle East 26:29–36CrossRefGoogle Scholar
  35. Keller LF, Waller DM (2002) Inbreeding effects in wild populations. Trends Ecol Evol 17:230–241CrossRefGoogle Scholar
  36. Khosravi R, Hemami MR, Malekian M et al (2016) Maxent modeling for predicting potential distribution of goitered gazelle in central Iran: the effect of extent and grain size on performance of the model. Turk. J Zool 40:574–585Google Scholar
  37. Klug PE, Wisely SM, With KA (2011) Population genetic structure and landscape connectivity of the Eastern Yellowbelly Racer (Coluber constrictor flaviventris) in the contiguous tallgrass prairie of northeastern Kansas, USA. Landsc Ecol 26:281–294.CrossRefGoogle Scholar
  38. Kovach AI, Litvaitis MK, Litvaitis JA (2003) Evaluation of fecal mtDNA analysis as a method to determine the geographic distribution of a rare lagomorph. Wildl Soc Bull 31:1061–1065Google Scholar
  39. Kumar S, Dixit SP, Verma NK et al (2009) Genetic Diversity analysis of the gohilwari breed of Indian goat (Capra hircus) using microsatellite markers. Am J Anim Vet Sci 4:49–57CrossRefGoogle Scholar
  40. Landguth E, Cushman S, Schwartz M et al (2010) Quantifying the lag time to detect barriers in landscape genetics. Mol Ecol 19:4179–4191CrossRefPubMedGoogle Scholar
  41. Legendre P, Fortin M (2010) Comparison of the Mantel test and alternative approaches for detecting complex multivariate relationships in the spatial analysis of genetic data. Mol Ecol Resour 10:831–844CrossRefPubMedGoogle Scholar
  42. Mallon DP, Kingswood SC (2001) Antelopes - global survey and regional action plans, part 4: North Africa, the Middle East, and Asia. IUCN, GlandGoogle Scholar
  43. Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220PubMedGoogle Scholar
  44. Martin L (2000) Gazelle (Gazella spp.) behavioral ecology: predicting animal behaviour for prehistoric environments in south-west Asia. J Zool 250:13–30CrossRefGoogle Scholar
  45. McRae BH (2006) Isolation by resistance. Evol Int J Org Evol 60:1551–1561CrossRefGoogle Scholar
  46. McRae BH, Dickson BG, Keitt TH et al (2008) Using circuit theory to model connectivity in ecology, evolution, and conservation. Ecology 89:2712–2724CrossRefPubMedGoogle Scholar
  47. Mullins J, McDevitt AD, Kowalczyk R et al (2014) The influence of habitat structure on genetic differentiation in red fox populations in north-eastern Poland. Acta Theriol 59:367–376CrossRefPubMedPubMedCentralGoogle Scholar
  48. Murphy MA, Dezzani R, Pilliod DS et al (2010) Landscape genetics of high mountain frog metapopulations. Mol Ecol 19:3634–3649CrossRefPubMedGoogle Scholar
  49. Okada A, Ito TY, Buuveibaatar B et al (2015) Genetic structure in Mongolian gazelles based on mitochondrial and microsatellite markers. Mammal Biol 80:303–311.CrossRefGoogle Scholar
  50. Okello JBA, Wittemyer G, Rasmussen HB et al (2005) Noninvasive genotyping and mendelian analysis of microsatellites in African savannah elephants. J Hered 96:679–687CrossRefPubMedGoogle Scholar
  51. Oksanen J (2005) Vegan: R functions for vegetation ecologists. Available from:
  52. Paetkau D, Slade R, Burden M, Estoup A (2004) Genetic assignment methods for the direct, realtime estimation of migration rate: a simulation-based exploration of accuracy and power. Mol Ecol 13:55–65CrossRefPubMedGoogle Scholar
  53. Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research. an update. Bioinformatics 28:2537–2539CrossRefPubMedPubMedCentralGoogle Scholar
  54. Pérez-Espona S, Pérez-Barbería FJ, Mcleod JE et al (2008) Landscape features affect gene flow of Scottish Highland red deer (Cervus elaphus). Mol Ecol 17:981–996CrossRefPubMedGoogle Scholar
  55. Pfenninger M, Salinger M, Haun T et al (2011) Factors and processes shaping the population structure and distribution of genetic variation across the species range of the freshwater snail radix balthica (Pulmonata, Basommatophora). BMC Evol Biol 11:135–142CrossRefPubMedPubMedCentralGoogle Scholar
  56. Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259CrossRefGoogle Scholar
  57. Pinto PV, Lopes S, Mourão S et al (2015) First estimates of genetic diversity for the highly endangered giant sable antelope, using a set of 57 microsatellites. Eur J Wildl Resour 61:313–317.CrossRefGoogle Scholar
  58. Piry S, Luikart G, Cornuet J-M (1999) BOTTLENECK: a computer program for detecting recent reductions in the effective population size using allele frequency data. J Hered 90:502–503CrossRefGoogle Scholar
  59. Piry S, Alapetite A, Cornuet JM et al (2004) GeneClass2: a software for genetic assignment and first-generation migrant detection. J Hered 95:536–539CrossRefPubMedGoogle Scholar
  60. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedPubMedCentralGoogle Scholar
  61. R Development Core Team (2005) R: a language and environment for statistical computing. Foundation for Statistical Computing, Vienna, AustriaGoogle Scholar
  62. Rannala B, Mountain JL (1997) Detecting immigration by using multilocus genotypes. Proc Natl Acad Sci USA 94:9197–9201CrossRefPubMedPubMedCentralGoogle Scholar
  63. Raymond M, Rousset F (1995) An exact test for population differentiation. Evol Int J Org Evol 49:1283–1286CrossRefGoogle Scholar
  64. Rice WR (1989) Analyzing tables of statistical tests. Evol Int J Org Evol 43:223–225CrossRefGoogle Scholar
  65. Senn HV, Pemberton JM (2009) Variable extent of hybridization between invasive sika (Cervus nippon) and native red deer (C. elaphus) in a small geographical area. Mol Ecol 18:862–876CrossRefPubMedGoogle Scholar
  66. Shuter JL, Broderick AC, Agnew DJ et al (2011) Conservation and management of migratory species. In: Milner-Gulland EJ, Fryxell JM, Sinclair ARE (ed) Animal migration. Oxford University Press, Oxford, pp 172–206CrossRefGoogle Scholar
  67. Silva TL, Godinho R, Castro D et al (2015) Genetic identification of endangered North African ungulates using noninvasive sampling. Mol Ecol Resour 15:652–661CrossRefPubMedGoogle Scholar
  68. Slatkin M (1985) Gene flow in natural populations. Annu Rev Ecol Syst 16:393–430CrossRefGoogle Scholar
  69. Smissen PJ, Melville J, Sumner J et al (2013) Mountain barriers and river conduits: phylogeographical structure in a large, mobile lizard (Varanidae: Varanus varius) from eastern Australia. J Biogeogr 40:1729–1740CrossRefGoogle Scholar
  70. Smouse PE, Long JC, Sokal RR (1986) Multiple regression and correlation extensions of the Mantel test of matrix correspondence. System Zool 35:627–632CrossRefGoogle Scholar
  71. Sommer S, McDevitt AD, Balkenhol N (2013) Landscape genetic approaches in conservation biology and management. Conserv Genet 14:249–251CrossRefGoogle Scholar
  72. Sorokin PA, Soldatova NV, Lukarevskiy VS et al (2011) Genetic diversity and relations of the goitered gazelle (Gazellasubgutturosa) Groups from Uzbekistan, Turkmenistan, and Azerbaijan: Analysis of the D_loop of mitochondrial DNA. Biol Bull 38:585–590CrossRefGoogle Scholar
  73. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680CrossRefPubMedPubMedCentralGoogle Scholar
  74. Tiedemann R, Cipriano F, Morin PA (2012) Updated guidelines for DNA data quality control and error rate estimation, for genetic studies relevant to IWC management advice. Report to the Scientific Commit- tee of the International Whaling Commission.Google Scholar
  75. Vaiman D, Mercier D, Moazami-Goudarzi K et al (1994) A set of 99 cattle microsatellites: characterization, synteny mapping, and polymorphism. Mamm Genome 5:288–297CrossRefPubMedGoogle Scholar
  76. Van Oosterhout C, Hutchinson WF, Wills DPM et al (2004) MICROCHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Res 4:535–538Google Scholar
  77. Wall WA, Douglas NA, Hoffmann WA, Wentworth TR, Gray JB, Xiang QJ, Knaus BK, Hohmann MJ (2014) Evidence of population bottleneck in Astragalus michauxii (Fabaceae), a narrow endemic of the southeastern United States. Conserv Genet 15:153–164CrossRefGoogle Scholar
  78. Wiens JA (2001) The landscape concept of dispersal. In: Clobert J, Danchin E, Dhondt AA, Nichols JD (ed) Dispersal. Oxford University Press, New York, pp 96–109Google Scholar
  79. Wilkie DS, Bennett EL, Peres CA et al (2011) The empty forest revisited. Ann N Y Acad Sci 1223:120–128CrossRefPubMedGoogle Scholar
  80. Wright S (1943) Isolation by distance. Genetics 28:114–138PubMedPubMedCentralGoogle Scholar
  81. Yang J, Jiang Z (2011) Genetic diversity, population genetic structure and demographic history of Przewalski’s gazelle (Procapra przewalskii): Implications for conservation. Conserv Genet 12:1411–1420CrossRefGoogle Scholar
  82. Zachos FE, Karami M, Ibenouazi Z et al (2010) First genetic analysis of a free-living population of the threatened goitered gazelle (Gazella subgutturosa). Mamm Biol 75:277–282CrossRefGoogle Scholar
  83. Zhu l, Zhan X, Meng T et al (2010) Landscape features influence gene flow as measured by cost-distance and genetic analyses: a case study for giant pandas in the Daxiangling and Xiaoxiangling Mountains. BMC Genet 13:34–40Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Rasoul Khosravi
    • 1
  • Mahmoud-Reza Hemami
    • 1
  • Mansoureh Malekian
    • 1
  • Teresa Luísa Silva
    • 2
  • Hamid-Reza Rezaei
    • 3
  • José Carlos Brito
    • 4
  1. 1.Department of Natural ResourcesIsfahan University of TechnologyIsfahanIran
  2. 2.CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do PortoVairãoPortugal
  3. 3.Department of Environmental Sciences, Faculty of Natural ResourcesUniversity of GorganGorganIran
  4. 4.Departamento de Biologia da Faculdade de Ciências da Universidade do PortoPortoPortugal

Personalised recommendations