Advertisement

Conservation Genetics

, Volume 19, Issue 2, pp 283–296 | Cite as

Landscape determinants of genetic differentiation, inbreeding and genetic drift in the hazel dormouse (Muscardinus avellanarius)

  • L. Bani
  • V. Orioli
  • G. Pisa
  • O. Dondina
  • S. Fagiani
  • E. Fabbri
  • E. Randi
  • A. Mortelliti
  • G. Sozio
Research Article

Abstract

The dispersal process is crucial in determining the fate of populations over time, but habitat fragmentation limits or prevents it. Landscape genetic is an effective tool to assess the degree to which dispersal still occurs in fragmented landscapes. The purpose of this study was to investigate the landscape determinants of genetic differentiation in the hazel dormouse (Muscardinus avellanarius), a forest-dependent species of conservation concern. By comparing subpopulations in a continuous (SLR) and a fragmented (VTH) population, we (i) searched for the presence of Isolation-by-Resistance (IBR); (ii) estimated migration rates; (iii) evaluated the degree of inbreeding and genetic drift, and searched for their landscape determinants. We found an IBR effect in VTH, which heavily hindered the dispersal process. The overall number of migrants among VTH subpopulations was very low (1 per generation, compared to 15 in SLR), although a between-patch displacement of about 4 km along a well-structured hedgerow probably occurred. The inbreeding (F > 0.2 in most subpopulations) and the genetic drift (four out five subpopulations showed private alleles on several loci, with relatively high frequencies) are of particular concern in VTH. However, they were found to be limited in large patches or in patches connected by hedgerows with a high number of neighbouring patches. As a conservation strategy in the VTH landscape, characterized by small patches, we suggest that the dispersal process among subpopulations is enhanced to sustain a functional metapopulation. For this purpose, an effective ecological network should be created by enhancing the continuity and the internal features of hedgerows.

Keywords

Isolation-by-resistance (IBR) Dispersal Landscape permeability Migration rates Private alleles Habitat fragmentation 

Notes

Acknowledgements

We are very grateful to Alice Mouton for providing us with the modified primer sequence of species-specific microsatellite markers of the hazel dormouse. We also thank Dr. Matteo Bonetti for language revision. This study was supported by the Research Fund of the University of Milano-Bicocca.

Supplementary material

10592_2017_999_MOESM1_ESM.docx (62 kb)
Supplementary material 1 (DOCX 61 KB)

References

  1. Allendorf FW, Gordon H, Luikart G, Aitken SN (2012) Conservation and the genetics of populations, 2nd edn. Wiley-Blackwell, HobokenGoogle Scholar
  2. Anderson DR, Burnham KP, Thompson WL (2000) Null hypothesis testing: problems, prevalence and an alternative. J Wildl Manage 64:912–923. doi: 10.2307/3803199 CrossRefGoogle Scholar
  3. Bani L, Pisa G, Luppi M, Spilotros G, Fabbri E, Randi E, Orioli V (2015) Ecological connectivity assessment in a strongly structured fire salamander (Salamandra salamandra) population. Ecol Evol 5:3472–3485. doi: 10.1002/ece3.1617 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bani L, Orioli V, Pisa G, Fagiani S, Fabbri E, Randi E, Sozio G, Mortelliti A (2017) Population genetic structure and sex-biased dispersal of the hazel dormouse (Muscardinus avellanarius) in a continuous and in a fragmented landscape in central Italy. Conserv Genet. doi: 10.1007/s10592-016-0898-2 Google Scholar
  5. Barton K (2016) MuMIn: Multi-Model Inference. R package version 1.15.6. https://CRAN.R-project.org/package=MuMIn
  6. Barton NH, Slatkin M (1986) A quasi-equilibrium theory of the distribution of rare alleles in a subdivided population. Heredity 56:409–415. doi: 10.1038/hdy.1986.63 CrossRefPubMedGoogle Scholar
  7. Bates D, Maechler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48. doi: 10.18637/jss.v067.i01 CrossRefGoogle Scholar
  8. Berg L, Berg à (1999) Abundance and survival of the hazel dormouse Muscardinus avellanarius in a temporary shrub habitat: a trapping study. Ann Zool Fennici 36:159–165Google Scholar
  9. Bright PW (1998) Behaviour of specialist species in habitat corridors: arboreal dormice avoid corridor gaps. Anim Behav 56:1485–1490. doi: 10.1006/anbe.1998.0921 CrossRefPubMedGoogle Scholar
  10. Bright PW, Morris PA (1990) Habitat requirements of dormice Muscardinus avellanarius in relation to woodland management in southwest England. Biol Conserv 54:307–326. doi: 10.1016/0006-3207(90)90143-D CrossRefGoogle Scholar
  11. Bright PW, Morris PA (2005) The Dormouse. The Mammal Society, London, UKGoogle Scholar
  12. Bright PW, Mitchell P, Morris PA (1994) Dormouse distribution: survey techniques insular ecology and selection of sites for conservation. J Appl Ecol 31:329–339CrossRefGoogle Scholar
  13. Brown JH, Kodric-Brown A (1977) Turnover rates in insular biogeography: effect of immigration on extinction. Ecology 58:445–449CrossRefGoogle Scholar
  14. Büchner S (2008) Dispersal of common dormice Muscardinus avellanarius in a habitat mosaic. Acta Theriol 53:259–262. doi: 10.1007/BF03193122 CrossRefGoogle Scholar
  15. Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach, Second edn. Springer-Verlag, New YorkGoogle Scholar
  16. Caughley G (1994) Directions in conservation biology. J Anim Ecol 63:215–244CrossRefGoogle Scholar
  17. Chanin P, Gubert L (2011) Surveying Hazel Dormice (Muscardinus avellanarius) with tubes and boxes: a comparison. Mammal Notes. The Mammal Society, London, UKGoogle Scholar
  18. Cornuet JM, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144:2001–2014PubMedPubMedCentralGoogle Scholar
  19. Dondina O, Kataoka L, Orioli V, Bani L (2016a) How to manage hedgerows as effective ecological corridors for mammals: a two-species approach. Agric Ecosyst Environ 231:283–290. doi: 10.1016/j.agee.2016.07.005 CrossRefGoogle Scholar
  20. Dondina O, Orioli V, D’Occhio P, Luppi M, Bani L (2016b) How does forest species specialization affect the application of the island biogeography theory in fragmented landscapes? J Biogeogr. doi: 10.1111/jbi.12827 Google Scholar
  21. Dormann CF, Elith J, Bacher S, Buchmann C, Carl G, Carré G, Marquéz JRG, Gruber B, Lafourcade B, Leitão PJ, Münkemüller T, McClean C, Osborne PE, Reineking B, Schröder B, Skidmore AK, Zurell D, Lautenbach S (2013) Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36:27–46. doi: 10.1111/j.1600-0587.2012.07348.x CrossRefGoogle Scholar
  22. Ehlers S (2012) The importance of hedgerows for hazel dormice (Muscardinus avellanarius) in Northern Germany. Peckiana 8:41–47Google Scholar
  23. Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Annu Rev Ecol Evol Syst 34:487–515. doi: 10.1146/annurev.ecolsys.34.011802.132419 CrossRefGoogle Scholar
  24. Fischer J, Lindenmayer DB (2007) Landscape modification and habitat fragmentation: a synthesis. Global Ecol Biogeogr 16:265–280. doi: 10.1111/j.1466-8238.2007.00287.x CrossRefGoogle Scholar
  25. Frankham R (2006) Genetics and landscape connectivity. In: Crooks KR, Sanjayan M (eds) Connectivity Conservation. Cambridge University Press, Cambridge, pp. 72–96CrossRefGoogle Scholar
  26. Giplin ME, Soulé ME (1986) Minimum viable populations: processes of species extinctions. In: Soulé ME (ed) Conservation biology: the science of scarcity and diversity. Sinauer Associates, Sunderland, pp. 19–34Google Scholar
  27. Goslee SC, Urban DL (2007) The ecodist package for dissimilarity-based analysis of ecological data. J Stat Softw 22:1–19CrossRefGoogle Scholar
  28. Greenbaum G, Templeton AR, Zarmi Y, Bar-David S (2014) Allelic richness following population founding events—a stochastic modeling framework incorporating gene flow and genetic drift. PLoS ONE 9:e115203. doi: 10.1371/journal.pone.0115203 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Grueber CE, Nakagawa S, Laws RJ, Jamieson IG (2011) Multimodel inference in ecology and evolution: challenges and solutions. J Evol Biol 24:699–711. doi: 10.1111/j.1420-9101.2010.02210.x CrossRefPubMedGoogle Scholar
  30. Gustafsson L, Kouki J, Sverdrup-Thygeson A (2010) Tree retention as a conservation measure in clear-cut forests of northern Europe: a review of ecological consequences. Scand J For Res 25:295–308CrossRefGoogle Scholar
  31. Hanski I, Simberloff D (1997) The metapopulation approach, its history, conceptual domain, and application to conservation. In: Hanski IA, Gilpin ME (eds) Metapopulation Biology. Academic Press, San Diego, pp. 5–26CrossRefGoogle Scholar
  32. Hilty J, Lidicker WZ Jr, Merenlender AM (2006) Corridor Ecology. Island Press, Washington D.CGoogle Scholar
  33. Holderegger R, Wagner HH (2006) A brief guide to landscape genetics. Landsc Ecol 21:793–796. doi: 10.1007/s10980-005-6058-6 CrossRefGoogle Scholar
  34. Jombart T, Ahmed I (2011) adegenet 1.3–1: new tools for the analysis of genome–wide SNP data. Bioinformatics 27:3070–3071. doi: 10.1093/bioinformatics/btr521 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Juškaitis R (1997) Ranging and movement of the common dormouse Muscardinus avellanarius in Lithuania. Acta Theriol 42:113–122CrossRefGoogle Scholar
  36. Juškaitis R (2007) Habitat Selection in the Common Dormouse Muscardinus avellanarius in Lithuania. Balt For 13:89–95Google Scholar
  37. Juškaitis R (2008) The common dormouse Muscardinus avellanarius: ecology, population structure and dynamics. Institute of Ecology of Vilnius University Publishers, VilniusGoogle Scholar
  38. Lowe WH, Allendorf FW (2010) What can genetics tell us about population connectivity? Mol Ecol 19:3038–3051. doi: 10.1111/j.1365-294X.2010.04688.x CrossRefPubMedGoogle Scholar
  39. Manel S, Holderegger R (2013) Ten years of landscape genetics. Trends Ecol Evol 28:614–621. doi: 10.1016/j.tree.2013.05.012 CrossRefPubMedGoogle Scholar
  40. Mantel N, Valand RS (1970) A technique of nonparametric multivariate analysis. Biometrics 26:547–558CrossRefPubMedGoogle Scholar
  41. McRae BH (2006) Isolation by resistance. Evol Int J org Evol 60:1551–1561. doi: 10.1111/j.0014-3820.2006.tb00500.x CrossRefGoogle Scholar
  42. McRae BH, Beier P (2007) Circuit theory predicts gene flow in plant and animal populations. Proc Natl Acad Sci USA 104:19885–19890. doi: 10.1073/pnas.0706568104 CrossRefPubMedPubMedCentralGoogle Scholar
  43. McRae BH, Shah VB (2009) Circuitscape user’s guide. ONLINE. The University of California, Santa Barbara. Available at http://www.circuitscape.org
  44. McRae BH, Dickson BG, Keitt TH, Shah VB (2008) Using circuit theory to model connectivity in ecology, evolution, and conservation. Ecology 89:2712–2724. doi: 10.1890/07-1861.1 CrossRefPubMedGoogle Scholar
  45. McRae BH, Hall SA, Beier P, Theobald DM (2012) Where to restore ecological connectivity? Detecting barriers and quantifying restoration benefits. PLoS One 7:e52604. doi: 10.1371/journal.pone.0052604 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Mortelliti A (2013) Targeting habitat management in fragmented landscapes: a case study with forest vertebrates. Biodivers Conserv 22:187–207. doi: 10.1007/s10531-012-0412-1 CrossRefGoogle Scholar
  47. Mortelliti A, Amori G, Capizzi D, Rondinini C, Boitani L (2010) Experimental design and taxonomic scope of fragmentation studies on European mammals: current status and future priorities. Mamm Rev 40:125–154. doi: 10.1111/j.1365-2907.2009.00157.x CrossRefGoogle Scholar
  48. Mortelliti A, Amori G, Capizzi D, Cervone C, Fagiani S, Pollini B, Boitani L (2011) Independent effects of habitat loss, habitat fragmentation and structural connectivity on the distribution of two arboreal rodents. J Appl Ecol 48:153–162. doi: 10.1111/j.1365-2664.2010.01918.x CrossRefGoogle Scholar
  49. Mortelliti A, Santarelli L, Sozio G, Fagiani S, Boitani L (2013) Long distance field crossings by hazel dormice (Muscardinus avellanarius) in fragmented landscapes. Mamm Biol 78:309–312. doi: 10.1016/j.mambio.2012.09.006 CrossRefGoogle Scholar
  50. Mortelliti A, Sozio G, Driscoll DA, Bani L, Boitani L, Lindenmayer DB (2014) Population and individual-scale responses to patch size, isolation and quality in the hazel dormouse. Ecosphere 5:107. doi: 10.1890/ES14-00115.1 CrossRefGoogle Scholar
  51. Naim DMD, Kemp SJ, Telfer S, Watts PC (2009) Isolation and characterization of 10 microsatellite loci in the common dormouse Muscardinus avellanarius. Mol Ecol Resour 9:1010–1012. doi: 10.1111/j.1755-0998.2009.02551.x CrossRefPubMedGoogle Scholar
  52. Neville H, Dunham J, Peacock M (2006) Assessing connectivity in salmonid fishes with DNA microsatellite markers. In: Crooks KR, Sanjayan M (eds) Conservation. Cambridge University Press, Cambridge, pp. 318–342Google Scholar
  53. Nogues S, Cabarga-Varona A (2014) Modelling land use changes for landscape connectivity: The role of plantation forestry and highways. J Nat Conserv 22:504–515. doi: 10.1016/j.jnc.2014.08.004 CrossRefGoogle Scholar
  54. Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295. doi: 10.1111/j.1471-8286.2005.01155.x CrossRefGoogle Scholar
  55. Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28:2537–2539. doi: 10.1111/j.1471-8286.2005.01155.x CrossRefPubMedPubMedCentralGoogle Scholar
  56. Peery MZ, Kirby R, Reid BN, Stoelting R, Doucet-Bëer E, Robinson S, Vásquez-Carrillo C, Pauli JN, Palsbøll PJ (2012) Reliability of genetic bottleneck tests for detecting recent population declines. Mol Ecol 21:3403–3418. doi: 10.1111/j.1365-294X.2012.05635.x CrossRefPubMedGoogle Scholar
  57. Pisa G, Orioli V, Spilotros G, Fabbri E, Randi E, Bani L (2015) Detecting a hierarchical genetic population structure: the case study of the Fire Salamander (Salamandra salamandra) in Northern Italy. Ecol Evol 5:743–758. doi: 10.1002/ece3.1335 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Quinn GP, Keough MJ (2002) Experimental design and data analysis for biologists. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  59. R Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing: Vienna, Austria. URL: http://www.R-project.org/. ISBN 3-900051-07-0
  60. Ralls K, Ballou J (1982) Effect of inbreeding on juvenile mortality in some small mammal species. Lab Anim 16:159–166CrossRefPubMedGoogle Scholar
  61. Ramakers JJC, Dorenbosch M, Foppen RPB (2014) Surviving on the edge: a conservation-oriented habitat analysis and forest edge manipulation for the hazel dormouse in the Netherlands. Eur J Wildl Res 60:927–931. doi: 10.1007/s10344-014-0849-5 CrossRefGoogle Scholar
  62. Rannala B (2007) BayesAss 3.0 User’s Manual (update to 28 Sept 2015). University of California DavisGoogle Scholar
  63. Rodriguez A, Andrèn H (1999) A comparison of Eurasian red squirrel distribution in different fragmented landscapes. J Appl Ecol 36:649–662. doi: 10.1046/j.1365-2664.1999.00426.x CrossRefGoogle Scholar
  64. Rousset F (2015) Genepop 4.4 for Windows/Linux/Mac OS X. Technical document available at: http://kimura.univ-montp2.fr/~rousset/Genepop.htm. Accessed June 2016
  65. Ruiz-González A, Gurrutxaga M, Cushman SA, Madeira MJ, Randi E, Gómez-Moliner BJ (2014) Landscape genetics for the empirical assessment of resistance surfaces: the European pine marten (Martes martes) as a target–species of a regional ecological network. PLoS ONE 9:e110552. doi: 10.1371/journal.pone.0110552 CrossRefPubMedPubMedCentralGoogle Scholar
  66. Saunders DA, Hobbs RJ, Margules CR (1991) Biological consequences of ecosystem fragmentation: a review. Conserv Biol 5:18–32CrossRefGoogle Scholar
  67. Saura S, Rubio L (2010) A common currency for the different ways in which patches and links can contribute to habitat availability and connectivity in the landscape. Ecography 33:523–537. doi: 10.1111/j.1600-0587.2009.05760.x Google Scholar
  68. Schulze W (1987) Zur Mobilität der Haselmaus (Muscardinus avellanarius L.) im Südharz. Säugetierkundliche Informationen 11:485–488Google Scholar
  69. Selkoe KA, Toonen RJ (2006) Microsatellites for ecologists: a practical guide to using and evaluating microsatellite markers. Ecol Lett 9:615–629. doi: 10.1111/j.1461-0248.2006.00889.x CrossRefPubMedGoogle Scholar
  70. Shah VB, McRae BH (2008) Circuitscape: a tool for landscape ecology. In: Varoquaux G, Vaught T, Millman J (eds), Proceedings of the 7th Python in Science Conference, Pasadena, CA, August 19–24, 2008, pp. 62–66Google Scholar
  71. Slatkin M (1981) Estimating levels of gene flow in natural populations. Genetics 99:323–335PubMedPubMedCentralGoogle Scholar
  72. Slatkin M (1985) Rare alleles as indicators of gene flow. Evol Int J org Evol 39:53–65CrossRefGoogle Scholar
  73. Slatkin M (1987) Gene flow and the geographic structure of natural populations. Science 236:787–792. doi: 10.1126/science.3576198 CrossRefPubMedGoogle Scholar
  74. Smouse PE, Long JC, Sokal RR (1986) Multiple regression and correlation extensions of the Mantel test of matrix correspondence. Syst Zool 35:627–632CrossRefGoogle Scholar
  75. Sozio G, Iannarilli F, Melcore I, Boschetti M, Fipaldini D, Luciani M, Roviani D, Schiavano A, Mortelliti A (2016) Forest management affects individual and population parameters of the hazel dormouse Muscardinus avellanarius. Mamm Biol 81:96–103. doi: 10.1016/j.mambio.2014.12.006 CrossRefGoogle Scholar
  76. Sundqvist L, Keenan K, Zackrisson M, Prodöhl P, Kleinhans D (2016) Directional genetic differentiation and relative migration. Ecol Evol 6:3461–3475. doi: 10.1002/ece3.2096 CrossRefPubMedPubMedCentralGoogle Scholar
  77. Taylor PD, Fahrig L, Henein K, Merriam G (1993) Connectivity is a vital element of landscape structure. Oikos 68:571–572CrossRefGoogle Scholar
  78. Tischendorf L, Fahrig L (2000) On the usage and measurement of landscape connectivity. Oikos 90:7–19. doi: 10.1034/j.1600-0706.2000.900102.x CrossRefGoogle Scholar
  79. Tracey JA (2006) Individual-based modeling as a tool for conserving connectivity. In: Crooks KR, Sanjayan M (eds) Connectivity Conservation. Cambridge University Press, Cambridge, pp. 343–368CrossRefGoogle Scholar
  80. Wang J (2001) COANCESTRY: a program for simulating, estimating and analysing relatedness and inbreeding coefficients. Mol Ecol Res 11:141–145. doi: 10.1111/j.1755-0998.2010.02885 CrossRefGoogle Scholar
  81. Wilcove DS, McLellan CH, Dobson AP (1986) Habitat fragmentation in the temperate zone. Conserv Biol 6:237–256Google Scholar
  82. Wilson GA, Rannala B (2003) Bayesian inference of recent migration rates using multilocus genotypes. Genetics 163:1177–1191PubMedPubMedCentralGoogle Scholar
  83. With KA, Gardner RH, Turner MG (1997) Landscape connectivity and population distributions in heterogeneous environments. Oikos 78:151–169. doi: 10.2307/3545811 CrossRefGoogle Scholar
  84. Wright S (1922) Coefficients of inbreeding and relationship. Am Nat 56:330–338CrossRefGoogle Scholar
  85. Yamamichi M, Innan H (2012) Estimating the migration rate from genetic variation data. Heredity 108:362–363. doi: 10.1038/hdy.2011.83 CrossRefPubMedGoogle Scholar
  86. Zeller KA, McGarigal K, Whiteley AR (2012) Estimating landscape resistance to movement: a review. Landscape Ecol 27:777–797. doi: 10.1007/s10980-012-9737-0 CrossRefGoogle Scholar
  87. Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology. Spring Science and Business Media, New YorkCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Department of Earth and Environmental SciencesUniversity of Milano-BicoccaMilanoItaly
  2. 2.Laboratorio di GeneticaIstituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA)Ozzano EmiliaItaly
  3. 3.Department of Biotechnology, Chemistry and Environmental EngineeringAalborg UniversityAalborgDenmark
  4. 4.Department of Biology and Biotechnology “Charles Darwin”Sapienza University of RomeRomeItaly
  5. 5.Department of Wildlife, Fisheries, and Conservation BiologyUniversity of MaineOronoUSA

Personalised recommendations