Skip to main content

Advertisement

Log in

Fine-scale differences in genetic and census population size ratios between two stream fishes

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

Comparing the ratio of effective number of breeders (N b ) to adult population size (N) among closely related coexisting species can provide insights into the role of life history on N b /N ratios and inform conservation programs towards limiting the loss of evolutionary potential in natural populations. We estimated N b and N in two coexisting salmonid fishes (Brook trout and Atlantic salmon) for 3–4 consecutive years in two small, adjacent streams in Newfoundland, Canada, using mark-recapture (N), linkage disequilibrium (N b(LD)), and sibship frequency approaches (N b(Sib) ). We found that N b /N ratios were about 20-fold greater in Atlantic salmon than in brook trout (mean 0.20, range 0.06–0.56 vs. mean 0.02, range 0.01–0.05, respectively). This difference was consistent across N b estimators. In addition, we found that removing migrants reduced N b : the strength of the effect was weak for N b(LD) and much stronger for N b(Sib). Our results highlight the importance of subtle ecological differences and gene flow in shaping N b /N. They also provide some evidence that the linkage between demographic and evolutionary processes varies between closely related taxa and suggest that a more complete understanding of the N b /N range across various species is an important component of conservation genetics and management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Anderson EC, Dunham KK (2008) The influence of family groups on inferences made with the program Structure. Mol Ecol Resour 8:1219–1229

    Article  CAS  PubMed  Google Scholar 

  • Ardren WR, Kapuscinski AR (2003) Demographic and genetic estimates of effective population size (Ne) reveals genetic compensation in steelhead trout. Mol Ecol 12:35–49

    Article  CAS  PubMed  Google Scholar 

  • Belmar-Lucero S, Wood J, Scott S et al (2012) Concurrent habitat and life history influences on effective/census population size ratios in stream-dwelling trout. Ecol Evol 2:563–573

    Article  Google Scholar 

  • Bernos TA, Fraser DJ (2016) Spatiotemporal relationship between adult census size and genetic population size across a wide population size gradient. Mol Ecol 25:4472–4487

    Article  CAS  PubMed  Google Scholar 

  • Blanchfield PJ, Ridgway MS (1997) Reproductive timing and use of redd sites by lake-spawning brook trout (Salvelinus fontinalis). Can J Fish Aquatic Sci 54:747–756

    Article  Google Scholar 

  • Blanchfield PJ, Ridgway MS (2005) The relative influence of breeding competition and habitat quality on female reproductive success in lacustrine brook trout (Salvelinus fontinalis). Can J Fish Aquatic Sci 62:2694–2705

    Article  Google Scholar 

  • Consuegra S, Verspoor E, Knox D, García De Leániz C (2005) Asymmetric gene flow and the evolutionary maintenance of genetic diversity in small, peripheral Atlantic salmon populations. Conserv Genet 6:823–842

    Article  CAS  Google Scholar 

  • Curry RA, Neakes DLG (1995) Groundwater and the selection of spawning sites by brook trout (Salvelinus fontinalis). Can J Aquatic Sci 52:1733–1740

    Article  Google Scholar 

  • Curry RA, Noakes DLG, Curry RA, Neakes DLG (1995) Groundwater and the selection of spawning sites by brook trout (Salvelinus fontinalis). Can J Fish Aquatic Sci 52:1733–1740

    Article  Google Scholar 

  • Earl DA, VonHoldt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361

    Article  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Ferchaud A-L, Perrier C, April J et al (2016) Making sense of the relationships between Ne, Nb and Nc towards defining conservation thresholds in Atlantic salmon (Salmo salar). Heredity 117:268–278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fleming IA (1996) Reproductive strategies of Atlantic salmon: ecology and evolution. Rev Fish Biol Fisheries 6:379–416

    Article  Google Scholar 

  • Frankham R (1995) Effective population size/adult population size ratios in wildlife: a review. Genet Res 66:95–107

    Article  Google Scholar 

  • Frankham R, Bradshaw CJ, Brook BW (2014) Genetics in conservation management: revised recommendations for the 50/500 rules, red list criteria and population viability analyses. Biol Conserv 170:56–63

    Article  Google Scholar 

  • Fraser DJ, Lippe C, Bernatchez L (2004) Consequences of unequal population size, asymmetric gene flow and sex-biased dispersal on population structure in brook charr (Salvelinus fontinalis). Mol Ecol 13:67–80

    Article  CAS  PubMed  Google Scholar 

  • Gibson RJ, Williams DD, McGowan C, Davidson WS (1996) The ecology of dwarf fluvial Atlantic salmon, Salmo Salar L., cohabiting with brook trout, Salvelinus fontinalis (Mitchill), in Southeastern Newfoundland, Canada. Polskie Arch Hidrobiol 43:145–166

    Google Scholar 

  • Gilbert KJ, Whitlock MC (2015) Evaluating methods for estimating local effective population size with and without migration. Evol Int J Org Evol 69:2154–2166

    Article  Google Scholar 

  • Gomez-Uchida D, Knight TW, Ruzzante DE (2009) Interaction of landscape and life history attributes on genetic diversity, neutral divergence and gene flow in a pristine community of salmonids. Mol Ecol 18:4854–4869

    Article  PubMed  Google Scholar 

  • Gomez-Uchida D, Palstra FP, Knight TW, Ruzzante DE (2013) Contemporary effective population and metapopulation size (Ne and meta-Ne): comparison among three salmonids inhabiting a fragmented system and differing in gene flow and its asymmetries. Ecol Evol 3:569–580

    Article  PubMed  PubMed Central  Google Scholar 

  • Guillemette F, Vallee C, Bertolo A, Magnan P (2011) The evolution of redd site selection in brook charr in different environments†¯: same cue, same benefit for fitness. Freshw Biol 56:1017–1029

    Article  Google Scholar 

  • Hearn WE (1987) Interspecific competition and habitat segregation among stream-dwelling trout and salmon: a review. Fisheries 12:24–31

    Article  Google Scholar 

  • Hua YG, Orban L (2005) A simple and affordable method for high throughput DNA extraction from animal tissues for PCR. Electrophoresis 26:3081–3083

    Article  Google Scholar 

  • Hutchings JA (1993) Adaptive life histories effected by age-specific survival and growth rate. Ecology 74:673–684

    Article  Google Scholar 

  • Hutchings JA (1994) Age- and size- specific costs of reproduction within populations of brook trout, Salvelinus fontinalis. Nordic Soc Oikos 70:12–20

    Article  Google Scholar 

  • Jones OR, Wang J (2010) COLONY: A program for parentage and sibship inference from multilocus genotype data. Mol Ecol Resour 10:551–555

    Article  PubMed  Google Scholar 

  • Kanno Y, Letcher BH, Hitt NP et al (2015) Seasonal weather patterns drive population vital rates and persistence in a stream fish. Global Change Biol 21:1856–1870

    Article  Google Scholar 

  • Kanno Y, Pregler KC, Hitt NP et al (2016) Seasonal temperature and precipitation regulate brook trout young-of-the-year abundance and population dynamics. Freshw Biol 61:88–99

    Article  Google Scholar 

  • King TL, Eackles MS, Letcher BH (2005) Microsatellite DNA markers for the study of Atlantic salmon (Salmo salar) kinship, population structure, and mixed-fishery analyses. Mol Ecol Notes 5:130–132

    Article  CAS  Google Scholar 

  • Luikart G, Ryman N, Tallmon DA, Schwartz MK, Allendorf FW (2010) Estimation of census and effective population sizes: the increasing usefulness of DNA-based approaches. Conserv Genet 11:355–373

    Article  CAS  Google Scholar 

  • Macmillan JL, Caissie D, Marshall TJ, Hinks L (2008) Population indices of brook trout (Salvelinus fontinalis), Atlantic salmon (Salmo salar), and salmonid competitors in relation to summer water temperature and habitat parameters in 100 streams in Nova Scotia. Can Tech Rep Fish Aquat Sci 2819:41

    Google Scholar 

  • Myhre AM, Engen S, Sæther B (2016) Effective size of density-dependent populations in fluctuating environments. Evol Int J Org Evol 70:2431–2446

    Article  Google Scholar 

  • Osborne MJ, Davenport SR, Hoagstrom CW, Turner TF (2010) Genetic effective size, Ne, tracks density in a small freshwater cyprinid, Pecos bluntnose shiner (Notropis simus pecosensis). Mol Ecol 19:2832–2844

    Article  CAS  PubMed  Google Scholar 

  • Palstra FP, Fraser DJ (2012) Effective/census population size ratio estimation: a compendium and appraisal. Ecol Evol 2:2357–2365

    Article  PubMed  PubMed Central  Google Scholar 

  • Palstra FP, Ruzzante DE (2008) Genetic estimates of contemporary effective population size: What can they tell us about the importance of genetic stochasticity for wild population persistence? Mol Ecol 17:3428–3447

    Article  PubMed  Google Scholar 

  • Paterson S, Piertney SB, Knox D, Gilbey J, Verspoor E (2004) Characterization and PCR multiplexing of novel highly variable tetranucleotide Atlantic salmon (Salmo solar L.) microsatellites. Mol Ecol Notes 4:160–162

    Article  CAS  Google Scholar 

  • Perrier C, Normandeau E, Dionne M, Richard A, Bernatchez L (2014) Alternative reproductive tactics increase effective population size and decrease inbreeding in wild Atlantic salmon. Evol Appl 7:1094–1106

    Article  PubMed  PubMed Central  Google Scholar 

  • Petersen C (1985) The yearly immigration of young plaice into the Limfjord from the German Sea. Rep Dan Biol Stn 5:5–84

    Google Scholar 

  • Phillipsen I, Funk W, Hoffman E, Monsen KJ, Blouin MS (2011) Comparative analyses of effective population size within and among species: ranid frogs as a case study. Evol Int J org Evol 65:2927–2946

    Article  Google Scholar 

  • Piry S, Alapetite A, Cornuet JM et al (2004) GENECLASS2: a software for genetic assignment and first-generation migrat detection. J Hered 95:536–539

    Article  CAS  PubMed  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genet Soc Am 155:945–959

    CAS  Google Scholar 

  • Rannala B, Mountain JL (1997) Detecting immigration by using multilocus genotypes. Proc Natl Acad Sci 94:9197–9201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raymond M, Rousset F (1995) GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249

    Article  Google Scholar 

  • Ryan P, Kerekes J (1988) Characteristics of sport fish populations in six experimentally fished Salmonid lakes of Gros Morne National Park, Newfoundland. Canadian Technical Report of Fisheries and Aquatic Sciences, St. John’s, Newfoundland, p. 172

  • Wang J (2004) Sibship reconstruction from genetic data with typing errors. Genet Soc Am 1979:1963–1979

    Google Scholar 

  • Wang J (2016) A comparison of single-sample estimators of effective population sizes from genetic marker data. Mol Ecol 25:4692–4711

    Article  PubMed  Google Scholar 

  • Waples RS (2005) Genetic estimates of contemporary effective population size: to what time periods do the estimates apply? Mol Ecol 14:3335–3352

    Article  CAS  PubMed  Google Scholar 

  • Waples RS, Antao T (2014) Intermittent breeding and constraints on litter size: consequences for effective population size per generation (Ne) and per reproductive cycle (Nb). Evol Int J Org Evol 68:1722–1734

    Article  Google Scholar 

  • Waples RS, Do C (2008) LDNE: a program for estimating effective population size from data on linkage disequilibrium. Mol Ecol Resour 8:753–756

    Article  PubMed  Google Scholar 

  • Waples RS, Do C (2010) Linkage disequilibrium estimates of contemporary Ne using highly variable genetic markers: a largely untapped resource for applied conservation and evolution. Evol Appl 3:244–262

    Article  PubMed  Google Scholar 

  • Waples RS, England PR (2011) Estimating contemporary effective population size on the basis of linkage disequilibrium in the face of migration. Genetics 189:633–644

    Article  PubMed  PubMed Central  Google Scholar 

  • Waples RS, Waples RS (2016) Making sense of genetic estimates of effective population size. Mol Ecol 25:4690–4691

    Article  Google Scholar 

  • Waples RS, Luikart G, Faulkner JR, Tallmon DA (2013) Simple life-history traits explain key effective population size ratios across diverse taxa. Proc R Soc Lond B 280:20131339

    Article  Google Scholar 

  • Waples RS, Antao T, Luikart G (2014) Effects of overlapping generations on linkage disequilibrium estimates of effective population size. Genetics 197:769–780

    Article  PubMed  PubMed Central  Google Scholar 

  • Whiteley AR, Coombs JA, Hudy M et al (2013) Fragmentation and patch size shape genetic structure of brook trout populations. Can J Fish Aquatic Sci 688:678–688

    Article  Google Scholar 

  • Whiteley AR, Coombs JA, Cembrola M et al (2015) Effective number of breeders provides a link between interannual variation in stream flow and individual reproductive contribution in a stream salmonid. Mol Ecol 24:3585–3602

    Article  PubMed  Google Scholar 

  • Whiteley AR, Coombs JA, Donnell MJO, Nislow KH, Letcher BH (2017) Keeping things local: subpopulation Nb and Ne in a stream network with partial barriers to fish migration. Evol Appl 348–365

  • Wilson GA, Rannala B (2003) Bayesian inference of recent migration rates using multilocus genotypes. Genet Soc Am 1191:1177–1191

    Google Scholar 

  • Wood JLA, Belmar-Lucero S, Hutchings IJ, Fraser DJ (2014) Relationship of habitat variability to population size in a stream fish. Ecol Appl 24:1085–1100

    Article  PubMed  Google Scholar 

  • Wood JLA, Yates MC, Fraser DJ (2016) Are heritability and selection related to population size in nature? Meta-analysis and conservation implications. Evol Appl 9:640–657

    Article  PubMed  PubMed Central  Google Scholar 

  • Yates M., Bernos TA, Fraser DJ (2017) A critical assessment of estimating census population size from genetic population size (or vice versa) in three fishes. Evol Appl. doi:10.1111/eva.12496

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank S. Smart, P. Debes, J-M. Matte, K. Marin and M. Heath for fieldwork, as well as Dr. John Carlos Garza and two anonymous reviewers for their helpful comments on previous versions of this manuscript. This research was funded by a Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant and Accelerator Award to D.J. Fraser, a Vladimir J. Elgart Graduate Entrance Scholarship and two Quebec Center for Biodiversity Science (QCBS) awards to T.A. Bernos, and an NSERC PGS Scholarship to M. Yates.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to T. A. Bernos or D. J. Fraser.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 39 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bernos, T.A., Yates, M.C. & Fraser, D.J. Fine-scale differences in genetic and census population size ratios between two stream fishes. Conserv Genet 19, 265–274 (2018). https://doi.org/10.1007/s10592-017-0997-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-017-0997-8

Keywords

Navigation