Conservation genomics of the silktail (Aves: Lamprolia victoriae) suggests the need for increased protection of native forest on the Natewa Peninsula, Fiji

Abstract

Effective conservation relies on accurate taxonomy, because we cannot protect what we do not know. Species limits among phenotypically differentiated and allopatrically distributed populations on Southwest Pacific islands are poorly understood. This likely has led to an underestimate of species richness in the Southwest Pacific, and, consequently, a biased application of conservation effort. The silktail Lamprolia victoriae is a bird species endemic to Fiji. Two subspecies are known from Vanua Levu and Taveuni Islands, but uncertainty remains whether they should be considered one or two species. If the latter, increased conservation effort is warranted to protect forest habitat where isolated populations occur only on the Natewa Peninsula. Here, we address this question by examining 8859 single nucleotide polymorphisms produced by restriction-site associated DNA sequencing. We find that the silktail is best considered two species, due to high genetic differentiation and low gene flow between the two subspecies. These differences match known phenotypic differences (size and plumage), as well as allopatric island distributions. We suggest that the silktail be used as an icon for conservation efforts of the heavily degraded forest habitats on the Natewa Peninsula. Finally, we reassess the divergence age estimates of Lamprolia and its relatives, Chaetorhynchus and Rhipidura, in light of new phylogenomic evidence from oscine passerines.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

References

  1. Andersen MJ, Nyári AS, Mason I et al (2014) Molecular systematics of the world’s most polytypic bird: the Pachycephala pectoralis/melanura (Aves: Pachycephalidae) species complex. Zool J Linn Soc 170:566–588. doi:10.1111/zoj.12088

    Article  Google Scholar 

  2. Andersen MJ, Hosner PA, Filardi CE, Moyle RG (2015a) Phylogeny of the monarch flycatchers reveals extensive paraphyly and novel relationships within a major Australo-Pacific radiation. Mol Phylogenet Evol 83:118–136. doi:10.1016/j.ympev.2014.11.010

    Article  PubMed  Google Scholar 

  3. Andersen MJ, Shult HT, Cibois A et al (2015b) Rapid diversification and secondary sympatry in Australo-Pacific kingfishers (Aves: Alcedinidae: Todiramphus). R Soc Open Sci 2:140375–140375. doi:10.1098/rsos.140375

    Article  PubMed  PubMed Central  Google Scholar 

  4. Andolfatto P, Davison D, Erezyilmaz D et al (2011) Multiplexed shotgun genotyping for rapid and efficient genetic mapping. Genome Res 21:610–617. doi:10.1101/gr.115402.110

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. Beerli P (2006) Comparison of Bayesian and maximum-likelihood inference of population genetic parameters. Bioinformatics 22:341–345. doi:10.1093/bioinformatics/bti803

    CAS  Article  PubMed  Google Scholar 

  6. Beerli P, Felsenstein J (2001) Maximum likelihood estimation of a migration matrix and effective population sizes in n subpopulations by using a coalescent approach. Proc Natl Acad Sci USA 98:4563–4568

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. Bouckaert R, Heled J, Kühnert D et al (2014) BEAST 2: A Software Platform for Bayesian Evolutionary Analysis. PLoS Comput Biol 10:e1003537. doi:10.1371/journal.pcbi.1003537

    Article  PubMed  PubMed Central  Google Scholar 

  8. Camacho C, Coulouris G, Avagyan V et al (2009) BLAST+: architecture and applications. BMC Bioinform 10:421. doi:10.1111/lam.12108/full

    Article  Google Scholar 

  9. Catchen JM, Amores A, Hohenlohe P et al (2011) Stacks: building and genotyping Loci de novo from short-read sequences. G3 Genes Genomes Genet 1:171–182. doi:10.1534/g3.111.000240

    CAS  Google Scholar 

  10. Chifman J, Kubatko L (2014) Quartet inference from SNP data under the coalescent model. Bioinformatics 30:3317–3324. doi:10.1093/bioinformatics/btu530

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. Cottrell GW (1967) A problem species: Lamprolia victoriae. EMU 66:253–266

    Article  Google Scholar 

  12. Crandall KA, Bininda-Emonds ORP, Mace GM, Wayne RK (2000) Considering evolutionary processes in conservation biology. Trends Ecol Evol 15:290–295. doi:10.1016/S0169-5347(00)01876-0

    CAS  Article  PubMed  Google Scholar 

  13. del Hoyo J, Collar NJ (2014) HBW and BirdLife international illustrated checklist of the birds of the world, vol 1: non-passerines. Lynx Edicions, Barcelona

    Google Scholar 

  14. del Hoyo J, Collar NJ (2016) HBW and BirdLife international illustrated checklist of the birds of the world, vol 2: passerines. Lynx Edicions, Barcelona

    Google Scholar 

  15. Dickinson EC, Christidis L (eds) (2014) The Howard and Moore complete checklist of the birds of the world, vol 2: passerines, 4 edn. Aves Press, Eastbourne

    Google Scholar 

  16. Drummond AJ, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7:214. doi:10.1186/1471-2148-7-214

    Article  PubMed  PubMed Central  Google Scholar 

  17. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620. doi:10.1111/j.1365-294X.2005.02553.x

    CAS  Article  PubMed  Google Scholar 

  18. Gill FB (2014) Species taxonomy of birds: which null hypothesis? The Auk 131:150–161. doi:10.1642/AUK-13-206.1

    Article  Google Scholar 

  19. Gill FB, Donsker D (2017) IOC world bird list (v 7.1). Available at http://www.worldbirdnames.org. Accessed 15 Mar 2017

  20. Haig SM, D’Elia J (2010) Chap. 2: Avian subspecies and the U.S. Endangered Species Act. Ornithol Monogr 67:24–34

    Article  Google Scholar 

  21. Irestedt M, Fuchs J, Jønsson KA et al (2008) The systematic affinity of the enigmatic Lamprolia victoriae (Aves: Passeriformes)—an example of avian dispersal between New Guinea and Fiji over Miocene intermittent land bridges? Mol Phylogenet Evol 48:1218–1222. doi:10.1016/j.ympev.2008.05.038

    Article  PubMed  Google Scholar 

  22. Jombart T, Ahmed I (2011) adegenet 1.3-1: new tools for the analysis of genome-wide SNP data. Bioinformatics 27:3070–3071. doi:10.1093/bioinformatics/btr521

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. Jombart T, Devillard S, Balloux F (2010) Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet 11(1):94. doi:10.1186/1471-2156-11-94

    Article  PubMed  PubMed Central  Google Scholar 

  24. Jønsson KA, Irestedt M, Christidis L et al (2014) Evidence of taxon cycles in an Indo-Pacific passerine bird radiation (Aves: Pachycephala). Proc R Soc B 281:20131727. doi:10.1098/rspb.2013.1727

    Article  PubMed  PubMed Central  Google Scholar 

  25. Kawakami T, Smeds L, Backström N et al (2014) A high-density linkage map enables a second-generation collared flycatcher genome assembly and reveals the patterns of avian recombination rate variation and chromosomal evolution. Mol Ecol 23:4035–4058. doi:10.1111/mec.12810

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. Mace GM (2004) The role of taxonomy in species conservation. Philos Trans R Soc Lond B Biol Sci 359:711–719. doi:10.1098/rstb.2003.1454

    Article  PubMed  PubMed Central  Google Scholar 

  27. Manthey JD, Moyle RG (2015) Isolation by environment in White-breasted Nuthatches (Sitta carolinensis) of the Madrean Archipelago sky islands: a landscape genomics approach. Mol Ecol 24:3628–3638. doi:10.1111/mec.13258

    CAS  Article  PubMed  Google Scholar 

  28. Masibalavu V, Dutson G (2006) Important bird areas in Fiji: conserving Fiji’s natural heritage. BirdLife International Pacific Partnership Secretariat, Suva

    Google Scholar 

  29. Mayr E (1945) Birds of the Southwest Pacific. Macmillan, New York

    Google Scholar 

  30. Mayr E, Diamond JM (2001) The birds of Northern Melanesia: speciation, ecology, and biogeography. Oxford University Press, New York

    Google Scholar 

  31. Miller MR, Dunham JP, Amores A et al (2007) Rapid and cost-effective polymorphism identification and genotyping using restriction site associated DNA (RAD) markers. Genome Res 17:240–248. doi:10.1101/gr.5681207

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. Moritz C (1994) Defining “Evolutionarily Significant Units” for conservation. Trends Ecol Evol 9:373–375. doi:10.1016/0169-5347(94)90057-4

    CAS  Article  PubMed  Google Scholar 

  33. Moyle RG, Oliveros CH, Andersen MJ et al (2016) Tectonic collision and uplift of Wallacea triggered the global songbird radiation. Nat Commun 7:12709. doi:10.1038/ncomms12709

    Article  PubMed  PubMed Central  Google Scholar 

  34. Osborne-Naikatini T (2015) Phylogeography, species distribution modelling, mitochondrial genome evolution and conservation of the Fijian frogs (Ceratobatrachidae). Dissertation, The University of the South Pacific, p 168

  35. Pratt HD (1987) A field guide to the birds of Hawaii and the Tropical Pacific. Princeton University Press, Princeton

    Google Scholar 

  36. Pratt HD (2010) Chap. 7: revisiting species and subspecies of island birds for a better assessment of biodiversity. Ornithol Monogr 67:78–89. doi:10.1525/om.2010.67.1.79

    Article  Google Scholar 

  37. Pratt HD, Mittermeier JC (2016) Notes on the natural history, taxonomy, and conservation of the endemic avifauna of the Samoan Archipelago. Wilson J Ornithol 128:217–241. doi:10.1676/wils-128-02-217-241.1

    Article  Google Scholar 

  38. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959. doi:10.1534/genetics.116.195164

    CAS  PubMed  PubMed Central  Google Scholar 

  39. R Development Core Team (2012) R: a language for statistical computing. R Foundation for Statistical Computing, Vienna

  40. Rodda P (1994) Geology of Fiji. South Pac Appl Geosci Comm SOPAC Tech Bull 8:131–151

    Google Scholar 

  41. Seeley JB, Searle EJ (1970) Geology of the Rakiraki district, Viti Levu, Fiji. NZ J Geol Geophys 13:52–71. doi:10.1080/00288306.1970.10428206

    CAS  Article  Google Scholar 

  42. Smith AC (1979) Flora Vitiensis nova: a new flora of Fiji (spermatophytes only), vol. 1. Pacific Tropical Botanical Garden, Lawaii

    Google Scholar 

  43. Smith AC (1981) Flora Vitiensis nova: a new flora of Fiji (spermatophytes only), vol. 2. Pacific Tropical Botanical Garden, Lawaii

    Google Scholar 

  44. Smith AC (1985) Flora Vitiensis nova: a new flora of Fiji (spermatophytes only), vol. 3. Pacific Tropical Botanical Garden, Lawaii

    Google Scholar 

  45. Smith AC (1988) Flora Vitiensis nova: a new flora of Fiji (spermatophytes only), vol. 4. Pacific Tropical Botanical Garden, Lawaii

    Google Scholar 

  46. Smith AC (1991) Flora Vitiensis nova: a new flora of Fiji (spermatophytes only), vol. 5. Pacific Tropical Botanical Garden, Lawaii

  47. Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313. doi:10.1093/bioinformatics/btu033

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  48. Swofford DL (2003) PAUP*. Phylogenetic analysis using parsimony (* and other methods). Version 4. Sinauer Associates, Sunderland

    Google Scholar 

  49. Thomas N (2013) The “Taveuni National Park” – enhanced conservation for a key biodiversity area. CEPF final project completion report

  50. Watling D (2004) A guide to the birds of Fiji and Western Polynesia, including American Samoa, Niue, Samoa, Tokelau, Tonga, Tuvalu and Wallis & Futuna. Environmental Consultants (Fiji) LTD, Suva

    Google Scholar 

  51. Wiley EO (1978) The evolutionary species concept reconsidered. Syst Zool 27:17–26

    Article  Google Scholar 

  52. Yan CY, Kroenke LW (1993) A plate tectonic reconstruction of the Southwest Pacific, 0–100 Ma. Proc Ocean Drill Program Sci Results 130:697–707

    Google Scholar 

  53. Zink RM (2004) The role of subspecies in obscuring avian biological diversity and misleading conservation policy. Proc Biol Sci 271:561–564. doi:10.1098/rspb.2003.2617

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are indebted to the staff and curators in the South Pacific Regional Herbarium at the University of the South Pacific, Suva (Marika Tuiwawa, Alivereti Naikatini), the Fiji Department of Forestry (Sanivalati Vido), the Biosecurity Authority of Fiji (Joeli Vakabua), Mika Bolakania, and Dick Watling for their assistance, permission, and friendship in Fiji. We thank Mark Robbins, University of Kansas Biodiversity Institute for assistance with a tissue loan. Bob Zink and one anonymous reviewer provided helpful comments on the manuscript. This project was funded in part by National Science Foundation (NSF) Doctoral Dissertation Improvement Grant [DEB-1406989 to JDM and RGM] and awards to MJA [DEB-1557051] and RGM [DEB-1557053]. The COBRE Genome Sequencing Core Laboratory, funded by National Institutes of Health (NIH) award number P20GM103638, provided laboratory facilities and services. We thank the KU Advanced Computing Facility (partially funded by NSF grant CNS 1337899 to A.T. Peterson) for the use of their facilities.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Michael J. Andersen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 384 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Andersen, M.J., Manthey, J.D., Naikatini, A. et al. Conservation genomics of the silktail (Aves: Lamprolia victoriae) suggests the need for increased protection of native forest on the Natewa Peninsula, Fiji. Conserv Genet 18, 1277–1285 (2017). https://doi.org/10.1007/s10592-017-0979-x

Download citation

Keywords

  • RAD-seq
  • Chaetorhynchus
  • Rhipidura
  • Species limits
  • Taxonomy
  • Natewa-Tunuloa Peninsula