Advertisement

Conservation Genetics

, Volume 18, Issue 6, pp 1277–1285 | Cite as

Conservation genomics of the silktail (Aves: Lamprolia victoriae) suggests the need for increased protection of native forest on the Natewa Peninsula, Fiji

  • Michael J. Andersen
  • Joseph D. Manthey
  • Alivereti Naikatini
  • Robert G. Moyle
Research Article

Abstract

Effective conservation relies on accurate taxonomy, because we cannot protect what we do not know. Species limits among phenotypically differentiated and allopatrically distributed populations on Southwest Pacific islands are poorly understood. This likely has led to an underestimate of species richness in the Southwest Pacific, and, consequently, a biased application of conservation effort. The silktail Lamprolia victoriae is a bird species endemic to Fiji. Two subspecies are known from Vanua Levu and Taveuni Islands, but uncertainty remains whether they should be considered one or two species. If the latter, increased conservation effort is warranted to protect forest habitat where isolated populations occur only on the Natewa Peninsula. Here, we address this question by examining 8859 single nucleotide polymorphisms produced by restriction-site associated DNA sequencing. We find that the silktail is best considered two species, due to high genetic differentiation and low gene flow between the two subspecies. These differences match known phenotypic differences (size and plumage), as well as allopatric island distributions. We suggest that the silktail be used as an icon for conservation efforts of the heavily degraded forest habitats on the Natewa Peninsula. Finally, we reassess the divergence age estimates of Lamprolia and its relatives, Chaetorhynchus and Rhipidura, in light of new phylogenomic evidence from oscine passerines.

Keywords

RAD-seq Chaetorhynchus Rhipidura Species limits Taxonomy Natewa-Tunuloa Peninsula 

Notes

Acknowledgements

We are indebted to the staff and curators in the South Pacific Regional Herbarium at the University of the South Pacific, Suva (Marika Tuiwawa, Alivereti Naikatini), the Fiji Department of Forestry (Sanivalati Vido), the Biosecurity Authority of Fiji (Joeli Vakabua), Mika Bolakania, and Dick Watling for their assistance, permission, and friendship in Fiji. We thank Mark Robbins, University of Kansas Biodiversity Institute for assistance with a tissue loan. Bob Zink and one anonymous reviewer provided helpful comments on the manuscript. This project was funded in part by National Science Foundation (NSF) Doctoral Dissertation Improvement Grant [DEB-1406989 to JDM and RGM] and awards to MJA [DEB-1557051] and RGM [DEB-1557053]. The COBRE Genome Sequencing Core Laboratory, funded by National Institutes of Health (NIH) award number P20GM103638, provided laboratory facilities and services. We thank the KU Advanced Computing Facility (partially funded by NSF grant CNS 1337899 to A.T. Peterson) for the use of their facilities.

Supplementary material

10592_2017_979_MOESM1_ESM.docx (385 kb)
Supplementary material 1 (DOCX 384 KB)

References

  1. Andersen MJ, Nyári AS, Mason I et al (2014) Molecular systematics of the world’s most polytypic bird: the Pachycephala pectoralis/melanura (Aves: Pachycephalidae) species complex. Zool J Linn Soc 170:566–588. doi: 10.1111/zoj.12088 CrossRefGoogle Scholar
  2. Andersen MJ, Hosner PA, Filardi CE, Moyle RG (2015a) Phylogeny of the monarch flycatchers reveals extensive paraphyly and novel relationships within a major Australo-Pacific radiation. Mol Phylogenet Evol 83:118–136. doi: 10.1016/j.ympev.2014.11.010 CrossRefPubMedGoogle Scholar
  3. Andersen MJ, Shult HT, Cibois A et al (2015b) Rapid diversification and secondary sympatry in Australo-Pacific kingfishers (Aves: Alcedinidae: Todiramphus). R Soc Open Sci 2:140375–140375. doi: 10.1098/rsos.140375 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Andolfatto P, Davison D, Erezyilmaz D et al (2011) Multiplexed shotgun genotyping for rapid and efficient genetic mapping. Genome Res 21:610–617. doi: 10.1101/gr.115402.110 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Beerli P (2006) Comparison of Bayesian and maximum-likelihood inference of population genetic parameters. Bioinformatics 22:341–345. doi: 10.1093/bioinformatics/bti803 CrossRefPubMedGoogle Scholar
  6. Beerli P, Felsenstein J (2001) Maximum likelihood estimation of a migration matrix and effective population sizes in n subpopulations by using a coalescent approach. Proc Natl Acad Sci USA 98:4563–4568CrossRefPubMedPubMedCentralGoogle Scholar
  7. Bouckaert R, Heled J, Kühnert D et al (2014) BEAST 2: A Software Platform for Bayesian Evolutionary Analysis. PLoS Comput Biol 10:e1003537. doi: 10.1371/journal.pcbi.1003537 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Camacho C, Coulouris G, Avagyan V et al (2009) BLAST+: architecture and applications. BMC Bioinform 10:421. doi: 10.1111/lam.12108/full CrossRefGoogle Scholar
  9. Catchen JM, Amores A, Hohenlohe P et al (2011) Stacks: building and genotyping Loci de novo from short-read sequences. G3 Genes Genomes Genet 1:171–182. doi: 10.1534/g3.111.000240 Google Scholar
  10. Chifman J, Kubatko L (2014) Quartet inference from SNP data under the coalescent model. Bioinformatics 30:3317–3324. doi: 10.1093/bioinformatics/btu530 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Cottrell GW (1967) A problem species: Lamprolia victoriae. EMU 66:253–266CrossRefGoogle Scholar
  12. Crandall KA, Bininda-Emonds ORP, Mace GM, Wayne RK (2000) Considering evolutionary processes in conservation biology. Trends Ecol Evol 15:290–295. doi: 10.1016/S0169-5347(00)01876-0 CrossRefPubMedGoogle Scholar
  13. del Hoyo J, Collar NJ (2014) HBW and BirdLife international illustrated checklist of the birds of the world, vol 1: non-passerines. Lynx Edicions, BarcelonaGoogle Scholar
  14. del Hoyo J, Collar NJ (2016) HBW and BirdLife international illustrated checklist of the birds of the world, vol 2: passerines. Lynx Edicions, BarcelonaGoogle Scholar
  15. Dickinson EC, Christidis L (eds) (2014) The Howard and Moore complete checklist of the birds of the world, vol 2: passerines, 4 edn. Aves Press, EastbourneGoogle Scholar
  16. Drummond AJ, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7:214. doi: 10.1186/1471-2148-7-214 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620. doi: 10.1111/j.1365-294X.2005.02553.x CrossRefPubMedGoogle Scholar
  18. Gill FB (2014) Species taxonomy of birds: which null hypothesis? The Auk 131:150–161. doi: 10.1642/AUK-13-206.1 CrossRefGoogle Scholar
  19. Gill FB, Donsker D (2017) IOC world bird list (v 7.1). Available at http://www.worldbirdnames.org. Accessed 15 Mar 2017
  20. Haig SM, D’Elia J (2010) Chap. 2: Avian subspecies and the U.S. Endangered Species Act. Ornithol Monogr 67:24–34CrossRefGoogle Scholar
  21. Irestedt M, Fuchs J, Jønsson KA et al (2008) The systematic affinity of the enigmatic Lamprolia victoriae (Aves: Passeriformes)—an example of avian dispersal between New Guinea and Fiji over Miocene intermittent land bridges? Mol Phylogenet Evol 48:1218–1222. doi: 10.1016/j.ympev.2008.05.038 CrossRefPubMedGoogle Scholar
  22. Jombart T, Ahmed I (2011) adegenet 1.3-1: new tools for the analysis of genome-wide SNP data. Bioinformatics 27:3070–3071. doi: 10.1093/bioinformatics/btr521 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Jombart T, Devillard S, Balloux F (2010) Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet 11(1):94. doi: 10.1186/1471-2156-11-94 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Jønsson KA, Irestedt M, Christidis L et al (2014) Evidence of taxon cycles in an Indo-Pacific passerine bird radiation (Aves: Pachycephala). Proc R Soc B 281:20131727. doi: 10.1098/rspb.2013.1727 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Kawakami T, Smeds L, Backström N et al (2014) A high-density linkage map enables a second-generation collared flycatcher genome assembly and reveals the patterns of avian recombination rate variation and chromosomal evolution. Mol Ecol 23:4035–4058. doi: 10.1111/mec.12810 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Mace GM (2004) The role of taxonomy in species conservation. Philos Trans R Soc Lond B Biol Sci 359:711–719. doi: 10.1098/rstb.2003.1454 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Manthey JD, Moyle RG (2015) Isolation by environment in White-breasted Nuthatches (Sitta carolinensis) of the Madrean Archipelago sky islands: a landscape genomics approach. Mol Ecol 24:3628–3638. doi: 10.1111/mec.13258 CrossRefPubMedGoogle Scholar
  28. Masibalavu V, Dutson G (2006) Important bird areas in Fiji: conserving Fiji’s natural heritage. BirdLife International Pacific Partnership Secretariat, SuvaGoogle Scholar
  29. Mayr E (1945) Birds of the Southwest Pacific. Macmillan, New YorkGoogle Scholar
  30. Mayr E, Diamond JM (2001) The birds of Northern Melanesia: speciation, ecology, and biogeography. Oxford University Press, New YorkGoogle Scholar
  31. Miller MR, Dunham JP, Amores A et al (2007) Rapid and cost-effective polymorphism identification and genotyping using restriction site associated DNA (RAD) markers. Genome Res 17:240–248. doi: 10.1101/gr.5681207 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Moritz C (1994) Defining “Evolutionarily Significant Units” for conservation. Trends Ecol Evol 9:373–375. doi: 10.1016/0169-5347(94)90057-4 CrossRefPubMedGoogle Scholar
  33. Moyle RG, Oliveros CH, Andersen MJ et al (2016) Tectonic collision and uplift of Wallacea triggered the global songbird radiation. Nat Commun 7:12709. doi: 10.1038/ncomms12709 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Osborne-Naikatini T (2015) Phylogeography, species distribution modelling, mitochondrial genome evolution and conservation of the Fijian frogs (Ceratobatrachidae). Dissertation, The University of the South Pacific, p 168Google Scholar
  35. Pratt HD (1987) A field guide to the birds of Hawaii and the Tropical Pacific. Princeton University Press, PrincetonGoogle Scholar
  36. Pratt HD (2010) Chap. 7: revisiting species and subspecies of island birds for a better assessment of biodiversity. Ornithol Monogr 67:78–89. doi: 10.1525/om.2010.67.1.79 CrossRefGoogle Scholar
  37. Pratt HD, Mittermeier JC (2016) Notes on the natural history, taxonomy, and conservation of the endemic avifauna of the Samoan Archipelago. Wilson J Ornithol 128:217–241. doi: 10.1676/wils-128-02-217-241.1 CrossRefGoogle Scholar
  38. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959. doi: 10.1534/genetics.116.195164 PubMedPubMedCentralGoogle Scholar
  39. R Development Core Team (2012) R: a language for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  40. Rodda P (1994) Geology of Fiji. South Pac Appl Geosci Comm SOPAC Tech Bull 8:131–151Google Scholar
  41. Seeley JB, Searle EJ (1970) Geology of the Rakiraki district, Viti Levu, Fiji. NZ J Geol Geophys 13:52–71. doi: 10.1080/00288306.1970.10428206 CrossRefGoogle Scholar
  42. Smith AC (1979) Flora Vitiensis nova: a new flora of Fiji (spermatophytes only), vol. 1. Pacific Tropical Botanical Garden, LawaiiCrossRefGoogle Scholar
  43. Smith AC (1981) Flora Vitiensis nova: a new flora of Fiji (spermatophytes only), vol. 2. Pacific Tropical Botanical Garden, LawaiiGoogle Scholar
  44. Smith AC (1985) Flora Vitiensis nova: a new flora of Fiji (spermatophytes only), vol. 3. Pacific Tropical Botanical Garden, LawaiiGoogle Scholar
  45. Smith AC (1988) Flora Vitiensis nova: a new flora of Fiji (spermatophytes only), vol. 4. Pacific Tropical Botanical Garden, LawaiiGoogle Scholar
  46. Smith AC (1991) Flora Vitiensis nova: a new flora of Fiji (spermatophytes only), vol. 5. Pacific Tropical Botanical Garden, LawaiiGoogle Scholar
  47. Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313. doi: 10.1093/bioinformatics/btu033 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Swofford DL (2003) PAUP*. Phylogenetic analysis using parsimony (* and other methods). Version 4. Sinauer Associates, SunderlandGoogle Scholar
  49. Thomas N (2013) The “Taveuni National Park” – enhanced conservation for a key biodiversity area. CEPF final project completion reportGoogle Scholar
  50. Watling D (2004) A guide to the birds of Fiji and Western Polynesia, including American Samoa, Niue, Samoa, Tokelau, Tonga, Tuvalu and Wallis & Futuna. Environmental Consultants (Fiji) LTD, SuvaGoogle Scholar
  51. Wiley EO (1978) The evolutionary species concept reconsidered. Syst Zool 27:17–26CrossRefGoogle Scholar
  52. Yan CY, Kroenke LW (1993) A plate tectonic reconstruction of the Southwest Pacific, 0–100 Ma. Proc Ocean Drill Program Sci Results 130:697–707Google Scholar
  53. Zink RM (2004) The role of subspecies in obscuring avian biological diversity and misleading conservation policy. Proc Biol Sci 271:561–564. doi: 10.1098/rspb.2003.2617 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Department of Biology and Museum of Southwestern BiologyUniversity of New MexicoAlbuquerqueUSA
  2. 2.Biology DepartmentNew York University Abu DhabiAbu DhabiUAE
  3. 3.Department of Ecology and Evolutionary Biology and Biodiversity InstituteUniversity of KansasLawrenceUSA
  4. 4.South Pacific Regional HerbariumUniversity of the South PacificSuvaFiji

Personalised recommendations