Assessment of genetic relationships between cultivated arracacha (Arracacia xanthorrhiza Bancr.) and its wild close relatives in the area of domestication using microsatellite markers

  • Eduardo Morillo
  • Steen Randers Knudsen
  • Gérard Sécond
Research Article

Abstract

Arracacha (Arracacia xanthorrhiza Bancr.) is an asexual propagated root crop domesticated in the Andean highlands, which exists naturally with polycarpic and monocarpic forms. Wild A. xanthorrhiza are present in the area of domestication and can occasionally be mistaken in the same field for a crop or a weed. To study genetic relationships between cultivated arracacha and the wild forms, we surveyed the diversity of 178 plant samples at 11 microsatellite (SSR) loci. As expected, wild A. xanthorrhiza forms showed a significantly higher allelic diversity for all the examined SSR markers. The cultivated pool showed an excess of heterozygosity as opposed to a deficit found in the wild compartment. High Fst values and AMOVA analysis suggest that the cultivated variety has genetically differentiated from the wild forms and is more related to the wild polycarpic than to the monocarpic. Both the wild forms were well distinguished from the cultivars. Nevertheless, among a set of F1 experimental hybrids (cultivated × wild polycarpic), some other genotypes were revealed, also being admixed. Our results highlight a large genetic base available in the wild populations of A. xanthorrhiza with potential implications for the utilization and breeding of this promising crop.

Keywords

Arracacia Arracacha SSRs Gene flow Andean region 

Supplementary material

10592_2017_978_MOESM1_ESM.docx (117 kb)
Supplementary material 1 (DOCX 116 KB)

References

  1. Blas R (2005) Diversity of Arracacia species in Peru. Ph. D. Thesis. Gembloux Agricultural University, Belgium p 154Google Scholar
  2. Blas R, Ghislain M, Herrera M, Baudoin JP (2008a) Genetic diversity analysis of wild Arracacia species according to morphological and molecular markers. Genet Resour Crop Evol Int J Org Evol 55:625–642CrossRefGoogle Scholar
  3. Blas R, Hermann M, Baudoin JP (2008b) Analysis of the geographic distribution and relationships among Peruvian wild species of Arracacia. Genet Resour Crop Evol 55(5):643–655CrossRefGoogle Scholar
  4. Bonnave M, Bleeck G, Beltrán JR, Maughan P, Flamand MC, Terrazas F, Bertin P (2014) Farmers’ unconscious incorporation of sexually-produced genotypes into the germplasm of a vegetatively-propagated crop (Oxalis tuberosa Mol.). Genet Resour Crop Evol 61(4):721–740CrossRefGoogle Scholar
  5. Bonnave M, Bleeckx T, Terrazas F, Bertin P (2016) Effect of the management of seed flows and mode of propagation on the genetic diversity in an Andean farming system: the case of oca (Oxalis tuberosa Mol.). Agric Hum Values 33(3):673–688Google Scholar
  6. Bristol ML (1988) Edible arracachas of the Sibundoy. Rev Academia Colombiana de Ciencias Exactas, Físicas y Naturales 16(63):107–110Google Scholar
  7. Castillo RO (1997) Caracterización molecular de 29 morfotipos de arracacha (Arracacia xanthorrhiza Bancroft) de la colección ecuatoriana. IX Congreso Internacional de Cultivos Andinos, University of Nacional de Sa, Antonio Abad del Cusco. Libro de resumenes, p 42 (abstract)Google Scholar
  8. Cavalli-Sforza LL, Edwards AWF (1967) Phylogenetic analysis: models and estimation procedures. Am J Hum Genet 19:233–257Google Scholar
  9. Chakraborty R, Jin L (1993) A unified approach to study hypervariable polymorphisms: statistical consideration of determining relatedness and populations distances. In: Chakraborty R et al (ed), DNA fingerprinting: state of science. Basel, Boston, pp. 153–175CrossRefGoogle Scholar
  10. Constance L, Affolter JM (1995) Three new species and a new combination in Arracacia Bancroft (Umbelliferae/Apiaceae). Brittonia 47(3):320–327CrossRefGoogle Scholar
  11. Ellstrand N (2014) Is gene flow the most important evolutionary force in plants? Am J Bot 101(5):737–753CrossRefPubMedGoogle Scholar
  12. Ellstrand N, Prentice H, Hancock JF (1999) Gene flow and introgression from domesticated plants into their wild relatives. Ann Rev Ecol Syst 30:539–563CrossRefGoogle Scholar
  13. Erazo M, Dorregaray F, Hermann M (1996) Electroforesis de proteinas e isoenzimas en Arracacia xanthorrhiza, Canna edulis y Oxalis tuberosa. In: Memorias del II Congreso Ecuatoriano de Botanica, PUCE, QuitoGoogle Scholar
  14. Goudet J (2001) FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.3)Google Scholar
  15. Hauser TP, Bjorn GK (2001) Hybrids between wild and cultivated carrots in Danish carrot fields. Genet Resour Crop Evol 48:499–506CrossRefGoogle Scholar
  16. Hermann M (1997) Arracacha. In: Hermann M, Heller J (eds) Andean roots and tubers: ahipa, arracacha, maca and yacon. International Plant Genetic Resources Institute, Rome, pp 75–172Google Scholar
  17. Ishiki K, Salazar C, Salgado V, Galarza R, Vinueza J (2001) Plant type and starch content of arracacha (Arracacia xanthorrhiza B.) cultivated in Ecuador. Breed Res 3(Extra issue 2):270Google Scholar
  18. Knudsen SR (2003) Reproduction biology of the Andean root crop arracacha (Arracacia xanthorrhiza Bancroft var. xanthorrhiza) and the taxonomic status of the South American Arracacia Bancroft species with special emphasis on the position of the cultivated arracacha and related wild species. PhD. Thesis. Department of Ecology, KVL University, DenmarkGoogle Scholar
  19. Lim TK (2015) Arracacia xanthorrhiza. In: Edible medicinal and non medicinal plants. Springer, Dordrecht, pp 361–366Google Scholar
  20. Liu K, Muse SV (2005) PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics 21(9):2128–2129CrossRefPubMedGoogle Scholar
  21. Mazon N, Castillo R, Hermann M, Espinosa P (1996) La zanahoria blanca o arracacha (Arracacia xanthorrhiza Bancroft) en Ecuador. Instituto Nacional Autónomo de Investigaciones Agropecuarias (INIAP), Publicación Miscelánea No. 67, Quito, p 41Google Scholar
  22. Michalakis Y, Excoffier L (1996) A generic estimation of population subdivision using distances between alleles with special reference for microsatellite loci. Genetics 142:1061–1064PubMedPubMedCentralGoogle Scholar
  23. Morillo E, Sécond G (2016) Tracing the domestication of the Andean root crop arracacha (Arracacia xanthorrhiza Bancr.): a molecular survey confirms the selection of a wild form apt to asexual reproduction. Plant Genet Resour 1–8. doi:10.1017/S1479262116000046
  24. Morillo E, Second G, Pham JL, Risterucci AM (2004) Development of DNA microsatellite markers in the Andean root crop arracacha: Arracacia xanthorrhiza Banc. Apiaceae Mol Ecol Notes 4:680–682CrossRefGoogle Scholar
  25. Moscoe LJ, Blas R, Masi DH, Masi MH, Emshwiller E (2017) Genetic basis for folk classification of oca (Oxalis tuberosa Molina; Oxalidaceae): implications for research and conservation of clonally propagated crops. Genet Resour Crop Evol 64:867. doi:10.1007/s10722-016-0407-y
  26. Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 28:2537–2539CrossRefPubMedPubMedCentralGoogle Scholar
  27. Pritchard JK, Stephens M, Donelly P (2000) Inference of populations structure using multilocus genotype data. Genetics 155:945–959PubMedPubMedCentralGoogle Scholar
  28. Pritchard JK, Wen W, Falush D (2004) Documentation for the structure software, version 2. Department of Human Genetics, University of Chicago, ChicagoGoogle Scholar
  29. Quiros CF, Ortega R, Van Raamsdonk L, Herrera Montoya M, Cisneros P, Schmidt E, Brush SB (1992) Increase of potato genetic resources in their center of diversity: the role of natural outcrossing and selection by the Andean farmer. Genet Resour Crop Evol 39:107–113CrossRefGoogle Scholar
  30. Raymond M, Rousset F (1995) GENEPOP Ver.0.2. Population genetics software for exact tests and ecumenicism. J Hered 86:248–249CrossRefGoogle Scholar
  31. Rohlf FJ (2002) NTSYSpc: numerical taxonomy system, ver. 2.1. Exeter Publishing, Ltd., SetauketGoogle Scholar
  32. Rosso CA, Medina I, Lobo M (2002) Morphologic characterization and agronomic evaluation of a Colombian collection of arracacha (Arracacia xanthorrhiza Bancroft). PGR Newslett 132:22–29Google Scholar
  33. Santos FF, Vieira JV, Reis N (1990) Ocorrencia de germinaçao de sementes de mandioquinha-salsa (Arracacia xanthorrhiza Bancroft) a nivel de campo, em Brasilia. Hortic Bras Bras, 8(n1):65 (Resumo)Google Scholar
  34. Sokal RR, Michener CD (1958) A statistical method for evaluating systematic relationships. Univ Kansas Sci Bull 38:1409–1438Google Scholar
  35. Valderrama M, Seminario J (2002) Los parientes silvestres de la arracacha (Arracacia xanthorrhiza Bancroft) y su uso en medicina tradicional, en el norte peruano. Arnaldoa Trujillo Perú 9(1):67–91Google Scholar
  36. Vásquez N, Medina C, Lobo M (2004) Caracterización morfológica de la colección colombiana (Tolima, Huila, Boyacá, Cauca) de arracacha (Arracacia xanthorrhiza). In: Raíces andinas: contribuciones al conocimiento y a la capacitación. Serie: conservación y uso de la biodiversidad de tubérculos y raíces andinos: una década de investigación para el desarrollo (1993–2003), pp. 165–178Google Scholar
  37. Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evol Int J Org Evol 38:1358–1370CrossRefGoogle Scholar
  38. Wijnheijmer EHM, Brandenburg WA, Ter Borg SJ (1989) Interactions between wild and cultivated carrots (Daucus carota L.) in the Netherlands. Euphytica 40:147–154CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Eduardo Morillo
    • 1
    • 3
  • Steen Randers Knudsen
    • 2
  • Gérard Sécond
    • 3
  1. 1.Instituto Nacional de Investigaciones Agropecuarias (INIAP)QuitoEcuador
  2. 2.Botanical SectionRoyal Veterinary and Agriculture UniversityCopenhagenDenmark
  3. 3.Institut de Recherche pour le Développement (IRD)Montpellier Cedex 5France

Personalised recommendations