Conservation Genetics

, Volume 18, Issue 3, pp 659–666 | Cite as

Higher immunocompetence is associated with higher genetic diversity in feral honey bee colonies (Apis mellifera)

  • Margarita M. López-Uribe
  • R. Holden Appler
  • Elsa Youngsteadt
  • Robert R. Dunn
  • Steven D. Frank
  • David R. TarpyEmail author
Research Article


Honey bees are the most important managed pollinators as they provide key ecosystem services for crop production worldwide. Recent losses of honey bee colonies in North America and Europe have demonstrated a need to develop strategies to improve their health and conserve their populations. Previously, we showed that feral honey bees—colonies that live in the wild without human assistance—exhibit higher levels of immunocompetence than managed colonies in North Carolina (USA). In a first attempt to investigate the underlying mechanisms of this difference in immune response, here we characterize the genetic composition of feral and managed honey bees using microsatellite markers. Our results reveal significant but small genetic differentiation between feral and managed honey bee colonies (ϕCT = 0.047, P = 0.03) indicating admixture between these two groups. Higher genetic diversity was correlated with higher immune response in feral (P MANOVA = 0.011) but not managed bees, despite the fact that the latter group showed significantly higher average genetic diversity (P ANCOVA < 0.001). These findings suggest that genetic diversity is positively associated with immunocompetence in feral honey bee colonies, and that the benefits of genetic diversity are obscured in managed bees, perhaps as a result of artificial selection. We hypothesize that high genetic variability provides the raw material upon which natural selection acts and generates adaptive genotypes in unmanaged populations. Feral populations could be useful sources of genetic variation to use in breeding programs that aim to improve honey bee health.


Microsatellites Antimicrobial peptides Defensin Hymenoptaecin Management 



We would like to thank Mark Jandricic for assistance with microsatellite genotyping, Michael Simone-Finstrom, editor Antonella Soro and two anonymous reviewers for valuable comments on the manuscript, and Zhian Kamvar for support with the R code for population genetic analyses.


This study was funded by the CALS Dean’s Enrichment Grant from North Carolina State University (to DRR, SDF, and RRD) and a National Science Foundation (NSF) Postdoctoral Fellowship (1523817 to MMLU).

Supplementary material

10592_2017_942_MOESM1_ESM.pdf (133 kb)
Supplementary material 1 (PDF 132 KB)
10592_2017_942_MOESM2_ESM.docx (24 kb)
Supplementary material 2 (DOCX 23 KB)


  1. Appler RH, Frank SD, Tarpy DR (2015) Within-Colony variation in the immunocompetency of managed and feral honey bees (Apis mellifera L.) in different urban landscapes. Insects 6:912–925. doi: 10.3390/insects6040912 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Boff S, Soro A, Paxton RJ, Alves-dos-Santos I (2014) Island isolation reduces genetic diversity and connectivity but does not significantly elevate diploid male production in a neotropical orchid bee. Conserv Genet 15:1123–1135. doi: 10.1007/s10592-014-0605-0 CrossRefGoogle Scholar
  3. Brookfield JFY (1996) A simple new method for estimating null allele frequency from heterozygote deficiency. Mol Ecol 5:453–455CrossRefGoogle Scholar
  4. Chakraborty R, De Andrade M, Daiger SP, Budowle B (1992) Apparent heterozygote deficiencies observed in DNA typing data and their implications in forensic applications. Ann Human Genet 56, 45–57CrossRefGoogle Scholar
  5. Chapman JR, Nakagawa S, Coltman DW et al (2009) A quantitative review of heterozygosity-fitness correlations in animal populations. Mol Ecol 18:2746–2765. doi: 10.1111/j.1365-294X.2009.04247.x CrossRefPubMedGoogle Scholar
  6. Di Pasquale G., Salignon M., Le Conte Y., Belzunces LP, Decourtye A., Kretzschmar A., Suchail S., Brunet JL, Alaux C (2013) Influence of pollen nutrition on honey bee health: do pollen quality and diversity matter?. PLoS ONE 8(8):e72016.Google Scholar
  7. Di Prisco G, Cavaliere V, Annoscia D et al (2013) Neonicotinoid clothianidin adversely affects insect immunity and promotes replication of a viral pathogen in honey bees. Proc Natl Acad Sci USA 110:18466–18471. doi: 10.1073/pnas.1314923110 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Doublet V, Labarussias M, de Miranda JR et al (2015) Bees under stress: sublethal doses of a neonicotinoid pesticide and pathogens interact to elevate honey bee mortality across the life cycle. Environ Microbiol 17:969–983. doi: 10.1111/1462-2920.12426 CrossRefPubMedGoogle Scholar
  9. Evans JD, Aronstein K, Chen YP et al (2006) Immune pathways and defence mechanisms in honey bees Apis mellifera. Insect Mol Biol 15:645–656. doi: 10.1111/j.1365-2583.2006.00682.x CrossRefPubMedPubMedCentralGoogle Scholar
  10. Evison SEF, Fazio G, Chappell P et al (2013) Host-parasite genotypic interactions in the honey bee: the dynamics of diversity. Ecol Evol 3:2214–2222. doi: 10.1002/ece3.599 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Evison SEF, Fazio G, Chappell P et al (2016) Innate expression of antimicrobial peptides does not explain genotypic diversity in resistance to fungal brood parasites in the honey bee. Apidologie 47:206–215. doi: 10.1007/s13592-015-0388-4 CrossRefGoogle Scholar
  12. Fries I, Camazine S (2001) Implications of horizontal and vertical pathogen transmission for honey bee epidemiology. Apidologie 32(3):199–214CrossRefGoogle Scholar
  13. Goudet J (2005) Hierfstat, a package for r to compute and test hierarchical F-statistics. Mol Ecol Notes 5:184–186. doi: 10.1111/j.1471-8286.2004.00828.x CrossRefGoogle Scholar
  14. Goulson D, Nicholls E, Botías C, Rotheray EL (2015) Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science 347(6229):1255957CrossRefPubMedGoogle Scholar
  15. Harpur BA, Minaei S, Kent CF, Zayed A (2012) Management increases genetic diversity of honey bees via admixture. Mol Ecol 21:4414–4421. doi: 10.1111/j.1365-294X.2012.05614.x CrossRefPubMedGoogle Scholar
  16. Harpur BA, Chernyshova A, Soltani A et al (2014) No genetic tradeoffs between hygienic behaviour and individual innate immunity in the honey bee, Apis mellifera. PLoS ONE 9:e104214. doi: 10.1371/journal.pone.0104214 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Jombart T, Devillard S, Balloux F (2010) Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet 11:94. doi: 10.1186/1471-2156-11-94 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Kalinowski ST (2004) Counting alleles with rarefaction: private alleles and hierarchical sampling designs. Conserv Genet 5(4):539–543CrossRefGoogle Scholar
  19. Kamvar ZN, Tabima JF, Grünwald NJ (2014) Poppr: an R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ 2:e281. doi: 10.7717/peerj.281 CrossRefPubMedPubMedCentralGoogle Scholar
  20. King KC, Lively CM (2012) Does genetic diversity limit disease spread in natural host populations? Heredity 109:199–203. doi: 10.1038/hdy.2012.33 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Kraus B, Page RE (1995) Effect of Varroa jacobsoni (Mesostigmata: Varroidae) on Feral Apis mellifera (Hymenoptera: Apidae) in California. Environ Entomol 24:1473–1480. doi: 10.1093/ee/24.6.1473 CrossRefGoogle Scholar
  22. Lee GM, Brown MJF, Oldroyd BP (2013) Inbred and outbred honey bees (Apis mellifera) have similar innate immune responses. Insectes Soc 60:97–102. doi: 10.1007/s00040-012-0271-5 CrossRefGoogle Scholar
  23. Lee KV, Steinhauer N, Rennich K et al (2015) A national survey of managed honey bee 2013–2014 annual colony losses in the USA: results from the bee informed partnership. Apidologie 46:292–305. doi: 10.1007/s13592-015-0356-z CrossRefGoogle Scholar
  24. Lowe EC, Simmons LW, Baer B (2011) Worker heterozygosity and immune response in feral and managed honeybees (Apis mellifera). Aust. J Zool 59:73. doi: 10.1071/ZO11041 Google Scholar
  25. Magnus RM ALS, Szalanski AL (2010) Genetic evidence for honey bees (Apis mellifera L.) of middle eastern lineage in the United States. Sociobiology 55:287–296Google Scholar
  26. Mattila HR, Seeley TD (2007) Genetic diversity in honey bee colonies enhances productivity and fitness. Science 317:362–364. doi: 10.1126/science.1143046 CrossRefPubMedGoogle Scholar
  27. Meirmans PG, Hedrick PW (2011) Assessing population structure: F(ST) and related measures. Mol Ecol Resour 11(1):5–18CrossRefPubMedGoogle Scholar
  28. Mikheyev AS, Tin MMY, Arora J, Seeley TD (2015) Museum samples reveal rapid evolution by wild honey bees exposed to a novel parasite. Nat Commun 6:7991. doi: 10.1038/ncomms8991 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89(3):583–590PubMedPubMedCentralGoogle Scholar
  30. Oldroyd B (1999) Coevolution while you wait: Varroa jacobsoni, a new parasite of western honeybees. Trends Ecol Evol 14:312–315. doi: 10.1016/S0169-5347(99)01613-4 CrossRefPubMedGoogle Scholar
  31. Paradis E (2010) pegas: an R package for population genetics with an integrated-modular approach. Bioinformatics 26:419–420. doi: 10.1093/bioinformatics/btp696 CrossRefPubMedGoogle Scholar
  32. Potts SG, Biesmeijer JC, Kremen C et al (2010) Global pollinator declines: trends, impacts and drivers. Trends Ecol Evol 25:345–353. doi: 10.1016/j.tree.2010.01.007 CrossRefPubMedGoogle Scholar
  33. Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative CT method. Nat Protoc 3:1101–1108. doi: 10.1038/nprot.2008.73 CrossRefPubMedGoogle Scholar
  34. Seeley TD, Smith ML (2015) Crowding honeybee colonies in apiaries can increase their vulnerability to the deadly ectoparasite Varroa destructor. Apidologie 46:716–727. doi: 10.1007/s13592-015-0361-2 CrossRefGoogle Scholar
  35. Seeley TD, Tarpy DR, Griffin SR et al (2015) A survivor population of wild colonies of European honeybees in the northeastern United States: investigating its genetic structure. Apidologie 46:654–666. doi: 10.1007/s13592-015-0355-0 CrossRefGoogle Scholar
  36. Simone-Finstrom M, Walz M, Tarpy DR (2016) Genetic diversity confers colony-level benefits due to individual immunity. Biol Lett. doi: 10.1098/rsbl.2015.1007 PubMedPubMedCentralGoogle Scholar
  37. Tarpy DR (2003) Genetic diversity within honeybee colonies prevents severe infections and promotes colony growth. Proc Royal Soc Lond B 270:99–103.CrossRefGoogle Scholar
  38. Tarpy DR, Page RE (2001) The curious promiscuity of queen honey bees (Apis mellifera): evolutionary and behavioural mechanisms. Ann Zool Finn 38:255–265.Google Scholar
  39. Tarpy DR, Caren J, Delaney D et al (2010) Mating frequencies of Africanized honey bees in the south western USA. J Apic Res 49:302–310. doi: 10.3896/IBRA. CrossRefGoogle Scholar
  40. Tarpy DR, Vanengelsdorp D, Pettis JS (2013) Genetic diversity affects colony survivorship in commercial honey bee colonies. Naturwissenschaften 100:723–728. doi: 10.1007/s00114-013-1065-y CrossRefPubMedGoogle Scholar
  41. Turcotte MM, Turley NE, Johnson, M.T.J. (2014) The impact of domestication on resistance to two generalist herbivores across 29 independent domestication events. New Phytol 204:671–681CrossRefPubMedGoogle Scholar
  42. Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004). MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4(3):535–538CrossRefGoogle Scholar
  43. Wang G-D, Xie H-B, Peng M-S, et al (2014) Domestication genomics: evidence from animals. Annu Rev Anim Biosci 2:65–84. doi: 10.1146/annurev-animal-022513-114129 CrossRefPubMedGoogle Scholar
  44. Wilson-Rich N, Tarpy DR, Starks PT (2012) Within- and across-colony effects of hyperpolyandry on immune function and body condition in honey bees (Apis mellifera). J Insect Physiol 58:402–407. doi: 10.1016/j.jinsphys.2011.12.020 CrossRefPubMedGoogle Scholar
  45. Winter DJ (2012) MMOD: an R library for the calculation of population differentiation statistics. Mol Ecol Resour 12:1158–1160. doi: 10.1111/j.1755-0998.2012.03174.x CrossRefPubMedGoogle Scholar
  46. Youngsteadt E, Appler RH, López-Uribe MM et al (2015) Urbanization increases pathogen pressure on feral and managed honey bees. PLoS ONE 10:e0142031. doi: 10.1371/journal.pone.0142031 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Margarita M. López-Uribe
    • 1
    • 2
    • 3
  • R. Holden Appler
    • 1
  • Elsa Youngsteadt
    • 1
  • Robert R. Dunn
    • 2
    • 4
  • Steven D. Frank
    • 1
  • David R. Tarpy
    • 1
    • 5
    Email author
  1. 1.Department of Entomology and Plant PathologyNorth Carolina State UniversityRaleighUSA
  2. 2.Department of Applied EcologyNorth Carolina State UniversityRaleighUSA
  3. 3.Department of EntomologyPennsylvania State UniversityUniversity ParkUSA
  4. 4.Center for Macroecology and Evolution and ClimateNatural History Museum of DenmarkCopenhagenDenmark
  5. 5.W. M. Keck Center for Behavioral BiologyNorth Carolina State UniversityRaleighUSA

Personalised recommendations