Advertisement

Conservation Genetics

, Volume 18, Issue 4, pp 977–982 | Cite as

Conservation implications of limited genetic diversity and population structure in Tasmanian devils (Sarcophilus harrisii)

  • Sarah Hendricks
  • Brendan Epstein
  • Barbara Schönfeld
  • Cody Wiench
  • Rodrigo Hamede
  • Menna Jones
  • Andrew Storfer
  • Paul Hohenlohe
Short Communication

Abstract

Tasmanian devils face a combination of threats to persistence, including devil facial tumor disease (DFTD), an epidemic transmissible cancer. We used RAD sequencing to investigate genome-wide patterns of genetic diversity and geographic population structure. Consistent with previous results, we found very low genetic diversity in the species as a whole, and we detected two broad genetic clusters occupying the northwestern portion of the range, and the central and eastern portions. However, these two groups overlap across a broad geographic area, and differentiation between them is modest (\({{F}_{\text{ST}}}\) = 0.1081). Our results refine the geographic extent of the zone of mixed ancestry and substructure within it, potentially informing management of genetic variation that existed in pre-diseased populations of the species. DFTD has spread across both genetic clusters, but recent evidence points to a genomic response to selection imposed by DFTD. Any allelic variation for resistance to DFTD may be able to spread across the devil population under selection by DFTD, and/or be present as standing variation in both genetic regions.

Keywords

Conservation genomics Devil facial tumor disease Gene flow Population bottlenecks RAD sequencing Transmissible cancer 

Notes

Acknowledgements

Funding for our work was provided by NSF grant DEB-1316549, NIH grant P30GM03324, and an Australian Research Council Future Fellowship to MJ (FT100100250). We thank the University of Idaho Institute for Bioinformatics and Evolutionary Studies for technical support and resources in the Genomics and Computational Resources Cores; Tamara Max, Mike Miller, Sean O’Rourke, Daryl Trumbo, and Doug Turnbull for assistance with sequencing. We are grateful to Amanda Stalhke, Lisette Waits, and three anonymous reviewers for comments on the manuscript.

Supplementary material

10592_2017_939_MOESM1_ESM.pdf (502 kb)
Supplementary material 1 (PDF 502 KB)

References

  1. Andrews KR, Good JM, Miller MR et al (2016) Harnessing the power of RADseq for ecological and evolutionary genomics. Nat Rev Genet 17:81–92. doi: 10.1038/nrg.2015.28 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Baird NA, Etter PD, Atwood TS et al (2008) Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS ONE 3:e3376. doi: 10.1371/journal.pone.0003376 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Brüniche-Olsen A, Jones ME, Austin JJ, et al (2014) Extensive population decline in the Tasmanian devil predates European settlement and devil facial tumour disease. Biol Lett 10:20140619–20140619. doi: 10.1098/rsbl.2014.0619 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Catchen J, Hohenlohe PA, Bassham S et al (2013) Stacks: an analysis tool set for population genomics. Mol Ecol 22:3124–3140. doi: 10.1111/mec.12354 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Caye K, Deist TM, Martins H, et al (2016) TESS3: fast inference of spatial population structure and genome scans for selection. Mol Ecol Resour 16:540–548. doi: 10.1111/1755-0998.12471 CrossRefPubMedGoogle Scholar
  6. De Carvalho D, Ingvarsson PK, Joseph J, et al (2010) Admixture facilitates adaptation from standing variation in the European aspen (Populus tremula L.), a widespread forest tree. Mol Ecol Resour 19:1638–1650.CrossRefGoogle Scholar
  7. Earl DA, vonHoldt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361. doi: 10.1007/s12686-011-9548-7 CrossRefGoogle Scholar
  8. Epstein B, Jones ME, Hamede R et al (2016) Rapid evolutionary response to a transmissible cancer in Tasmanian devils. Nat Commun 7:12684. doi: 10.1038/ncomms12684 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Etter PD, Preston JL, Bassham S et al (2011) Local de novo assembly of RAD paired-end contigs using short sequencing reads. PLoS ONE 6:e18561. doi: 10.1371/journal.pone.0018561 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol 14:2611–2620. doi: 10.1111/j.1365-294X.2005.02553.x CrossRefPubMedGoogle Scholar
  11. Frankham R (2005) Genetics and extinction. Biol Conserv 126:131–140. doi: 10.1016/j.biocon.2005.05.002 CrossRefGoogle Scholar
  12. Frankham R (2016) Genetic rescue benefits persist to at least the F3 generation, based on a meta-analysis. Biol Conserv 195:33–36. doi: 10.1016/j.biocon.2015.12.038 CrossRefGoogle Scholar
  13. Hawkins CE, Baars C, Hesterman H et al (2006) Emerging disease and population decline of an island endemic, the Tasmanian devil Sarcophilus harrisii. Biol Conserv 131:307–324. doi: 10.1016/j.biocon.2006.04.010 CrossRefGoogle Scholar
  14. Hogg CJ, Ivy JA, Srb C et al (2015) Influence of genetic provenance and birth origin on productivity of the Tasmanian devil insurance population. Conserv Genet 16:1465–1473. doi: 10.1007/s10592-015-0754-9 CrossRefGoogle Scholar
  15. Huson DH, Bryant D (2006) Application of phylogenetic networks in evolutionary studies. Mol Biol Evol 23:254–267. doi: 10.1093/molbev/msj030 CrossRefPubMedGoogle Scholar
  16. Jones ME, Paetkau D, Geffen E, Moritz C (2004) Genetic diversity and population structure of Tasmanian devils, the largest marsupial carnivore. Mol Ecol 13:2197–2209. doi: 10.1111/j.1365-294X.2004.02239.x CrossRefPubMedGoogle Scholar
  17. Jones ME, Cockburn A, Hamede R, et al (2008) Life-history change in disease-ravaged Tasmanian devil populations. Proc Natl Acad Sci 105:10023–10027CrossRefPubMedPubMedCentralGoogle Scholar
  18. Kopelman NM, Mayzel J, Jakobsson M, et al (2015) Clumpak: a program for identifying clustering modes and packaging population structure inferences across K. Mol Ecol Resour 15:1179–1191. doi: 10.1111/1755-0998.12387 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Lachish S, Jones ME, McCallum H (2007) The impact of disease on the survival and population growth rate of the Tasmanian devil. J Anim Ecol 76:926–936. doi: 10.1111/j.1365-2656.2007.01272.x CrossRefPubMedGoogle Scholar
  20. Lachish S, Miller KJ, Storfer A et al (2010) Evidence that disease-induced population decline changes genetic structure and alters dispersal patterns in the Tasmanian devil. Heredity 106:172–182. doi: 10.1038/hdy.2010.17 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359. doi: 10.1038/nmeth.1923 CrossRefPubMedPubMedCentralGoogle Scholar
  22. McCallum H, Tompkins DM, Jones ME et al (2007) Distribution and Impacts of Tasmanian devil facial tumor disease. EcoHealth 4:318–325. doi: 10.1007/s10393-007-0118-0 CrossRefGoogle Scholar
  23. McCallum H, Jones ME, Hawkins C et al (2009) Transmission dynamics of Tasmanian devil facial tumor disease may lead to disease-induced extinction. Ecology 90:3379–3392CrossRefPubMedGoogle Scholar
  24. Meirmans PG (2015) Seven common mistakes in population genetics and how to avoid them. Mol Ecol 24:3223–3231. doi: 10.1111/mec.13243 CrossRefPubMedGoogle Scholar
  25. Miller W, Hayes VM, Ratan A, et al (2011) Genetic diversity and population structure of the endangered marsupial Sarcophilus harrisii (Tasmanian devil). Proc Natl Acad Sci USA 108: 12348–12353. doi: 10.1073/pnas CrossRefPubMedPubMedCentralGoogle Scholar
  26. Morris KM, Wright B, Grueber CE et al (2015) Lack of genetic diversity across diverse immune genes in an endangered mammal, the Tasmanian devil (Sarcophilus harrisii). Mol Ecol 24:3860–3872. doi: 10.1111/mec.13291 CrossRefPubMedGoogle Scholar
  27. Murchison EP, Schulz-Trieglaff OB, Ning Z et al (2012) Genome sequencing and analysis of the Tasmanian devil and its transmissible cancer. Cell 148:780–791. doi: 10.1016/j.cell.2011.11.065 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Oksanen J, Blanchet FG, Kindt R, et al (2015) Package ‘vegan’. Community ecology package, version 2–2.Google Scholar
  29. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedPubMedCentralGoogle Scholar
  30. Pye RJ, Pemberton D, Tovar C, et al (2016) A second transmissible cancer in Tasmanian devils. Proc Natl Acad Sci 113:374–379CrossRefPubMedGoogle Scholar
  31. Raymond M, Rousset F (1995) An exact test for population differentiation. Evolution 49:1280–1283. doi: 10.2307/2410454 CrossRefPubMedGoogle Scholar
  32. Siddle HV, Marzec J, Cheng Y, et al (2010) MHC gene copy number variation in Tasmanian devils: implications for the spread of a contagious cancer. Proc R Soc B 277:2001–2006. doi: 10.1098/rspb.2009.2362 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595PubMedPubMedCentralGoogle Scholar
  34. Watterson GA (1975) On the number of segregating sites in genetical models without recombination. Theor Popul Biol 7:256–276CrossRefPubMedGoogle Scholar
  35. Wright B, Morris K, Grueber CE et al (2015) Development of a SNP-based assay for measuring genetic diversity in the Tasmanian devil insurance population. BMC Genom 16:791. doi: 10.1186/s12864-015-2020-4 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Department of Biological Sciences, Institute for Bioinformatics and Evolutionary StudiesUniversity of IdahoMoscowUSA
  2. 2.School of Biological SciencesWashington State UniversityPullmanUSA
  3. 3.School of Biological SciencesUniversity of TasmaniaHobartAustralia

Personalised recommendations