Abstract
Population connectivity is an important source of information for planning conservation strategy. The degree of connectivity implies using alternative conservation prioritizations based on the appropriate spatial scale for management units. In species with low population connectivity, it is important to preserve local populations in order to maintain the species throughout its range. In contrast, species with high connectivity require extensive management aiming at preserving gene flow through the entire species range. Here we examine at the continental scale the relationship between inter-population/inter-individual genetic and geographical distances to study the isolation-by-distance (IBD) pattern within the European range of nine wild bee species. We then assess the suitability of multi-local or extensive conservation to ensure their long-term survival. Results based on inter-population differences show only two out of nine species with significant IBD. European bee populations seem quite connected when their IBD is compared to IBD of other phyla. However, our results based on inter-individual distances show that eight out of nine species display significant IBD. These different results are presumably a consequence of potential limitations of the inter-population approach. Therefore, we speculate that the inter-population approach could result in inaccurate IBD estimations. This approach should therefore be replaced by the inter-individual approach in order to provide strong supported conservation guidelines. We support multi-local conservation programs based on our analysis of inter-individual distances.
This is a preview of subscription content, access via your institution.
References
Amézquita A, Lima AP, Jehle R et al (2009) Calls, colours, shape, and genes: a multi-trait approach to the study of geographic variation in the Amazonian frog Allobates femoralis. Biol J Linn Soc 98:826–838. doi:10.1111/j.1095-8312.2009.01324.x
Avise JC (2000) Phylogeography: the history and formation of species. Harvard University Press, Cambridge
Banks SAMC, Peakall ROD (2012) Genetic spatial autocorrelation can readily detect sex-biased dispersal. Mol Ecol 21:2092–2105. doi:10.1111/j.1365-294X.2012.05485.x
Batalha-Filho H, Waldschmidt AM, Campos LAO et al (2010) Phylogeography and historical demography of the neotropical stingless bee Melipona quadrifasciata (Hymenoptera, Apidae): incongruence between morphology and mitochondrial DNA. Apidologie 41:534–547. doi:10.1051/apido/2010001
Brito PH (2007) Contrasting patterns of mitochondrial and microsatellite genetic structure among Western European populations of tawny owls (Strix aluco). Mol Ecol 16:3423–3437. doi:10.1111/j.1365-294X.2007.03401.x
Broquet T, Petit EJ (2009) Molecular estimation of dispersal for ecology and population genetics. Annu Rev Ecol Evol Syst 40:193–216. doi:10.1146/annurev.ecolsys.110308.120324
Cerântola N de CM, Oi CA, Cervini M, Lama MA (2011) Genetic differentiation of urban populations of Euglossa cordata from the state of São Paulo, Brazil. Apidologie 42:214–222. doi:10.1051/apido/2010055
Crispo E, Hendry AP (2005) Does time since colonization influence isolation by distance? A meta-analysis. Conserv Genet 6:665–682. doi:10.1007/s10592-005-9026-4
Crozier RH (1977) Evolutionary genetics of the Hymenoptera. Annu Rev Entomol 22:263–288
Dannewitz J, Maes GE, Johansson L et al (2005) Panmixia in the European eel: a matter of time. Proc R Soc B Biol Sci 272:1129–1137. doi:10.1098/rspb.2005.3064
De Barro PJ (2005) Genetic structure of the whitefly Bemisia tabaci in the Asia-Pacific region revealed using microsatellite markers. Mol Ecol 14:3695–3718. doi:10.1111/j.1365-294X.2005.02700.x
Dellicour S, Mardulyn P (2014) SPADS 1.0: a toolbox to perform spatial analyses on DNA sequence data sets. Mol Ecol Resour 14:647–651. doi:10.1111/1755-0998.12200
Dellicour S, Mardulyn P, Hardy OJ et al (2014) Inferring the mode of colonization of the rapid range expansion of a solitary bee from multilocus DNA sequence variation. J Evol Biol 27:116–132. doi:10.1111/jeb.12280
Dellicour S, Michez D, Mardulyn P (2015a) Comparative phylogeography of five bumblebees: impact of range fragmentation, range size and diet specialization. Biol J Linn Soc 116:926–939. doi:10.1111/bij.12636
Dellicour S, Michez D, Rasplus J-Y, Mardulyn P (2015b) Impact of past climatic changes and resource availability on the population demography of three food-specialist bees. Mol Ecol 24:1074–1090. doi:10.1111/mec.13085
Dellicour S, Kastally C, Varela S et al (2016) Ecological niche modelling and coalescent simulations to explore the recent geographic range history of five widespread bumblebee species in Europe. J. Biogeogr. in press. doi:10.1111/jbi.12748
Department for Environment, Food and Rural Affairs (2014) The National Pollinator Strategy: for bees and other pollinators in England. Department for Environment, Food and Rural Affairs, London, UK
Doerr VAJ, Barrett T, Doerr ED (2011) Connectivity, dispersal behaviour and conservation under climate change: a response to Hodgson et al. J Appl Ecol 48:143–147. doi:10.1111/j.1365-2664.2010.01899.x
Driscoll DA, Banks SC, Barton PS et al (2014) The trajectory of dispersal research in conservation biology. Systematic review. PLoS One 9:e95053. doi:10.1371/journal.pone.0095053
Duennes MA, Lozier JD, Hines HM, Cameron SA (2012) Geographical patterns of genetic divergence in the widespread Mesoamerican bumble bee Bombus ephippiatus (Hymenoptera: Apidae). Mol Phylogenet Evol 64:219–231. doi:10.1016/j.ympev.2012.03.018
Erler S, Lattorff HMG (2010) The degree of parasitism of the bumblebee (Bombus terrestris) by cuckoo bumblebees (Bombus (Psithyrus) vestalis). Insectes Soc 57:371–377. doi:10.1007/s00040-010-0093-2
Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: Application to human mitochondrial DNA restriction data. Genetics 131:479–491
Fields Development Team (2006) Fields: Tools for Spatial Data
Fortel L, Henry M, Guilbaud L et al (2014) Decreasing abundance, increasing diversity and changing structure of the wild bee community (Hymenoptera: Anthophila) along an urbanization gradient. PLoS One 9:e104679. doi:10.1371/journal.pone.0104679
Frankham R, Ballou JD, Briscoe DA (2010) Introduction to conservation genetics, 2nd edn. Cambridge University Press, Cambridge
Gadgil M (1971) Dispersal: Population Consequences and Evolution. Ecology 52:253. doi:10.2307/1934583
Gammans N, Banks B, Edwards M (2009) The return of the native: Loss and repatriation of the short-haired bumblebee Bombus subterraneus. Br Wildl 21:116–118
Garibaldi LA, Steffan-Dewenter I, Winfree R et al (2013) Wild pollinators enhance fruit set of crops regardless of honey bee abundance. Science 339:1608–1611. doi:10.1126/science.1230200
Goulson D, Nicholls E, Botías C, Rotheray EL (2015) Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science 347:1255957. doi:10.1126/science.1255957
Hewitt GM (1996) Some genetic consequences of ice ages, and their role in divergence and speciation. Biol J Linn Soc 58:247–276. doi:10.1006/bijl.1996.0035
Hines HM, Williams PH (2012) Mimetic colour pattern evolution in the highly polymorphic Bombus trifasciatus (Hymenoptera: Apidae) species complex and its comimics. Zool J Linn Soc 166:805–826. doi:10.1111/j.1096-3642.2012.00861.x
Holzschuh A, Steffan-Dewenter I, Tscharntke T (2009) Grass strip corridors in agricultural landscapes enhance nest-site colonization by solitary wasps. Ecol Appl 19:123–132. doi:10.1890/08-0384.1
James CH, Moritz C (2000) Intraspecific phylogeography in the sedge frog Litoria fallax (Hylidae) indicates pre-Pleistocene vicariance of an open forest species from eastern Australia. Mol Ecol 9:349–358. doi:10.1046/j.1365-294x.2000.00885.x
Jin L, Chakraborty R (1994) Estimation of genetic distance and coefficient of gene diversity from single-probe multilocus DNA fingerprinting data. Mol Biol Evol 11:120–127
Johnson JA, Toepfer JE, Dunn PO (2003) Contrasting patterns of mitochondrial and microsatellite population structure in fragmented populations of greater prairie-chickens. Mol Ecol 12:3335–3347. doi:10.1046/j.1365-294X.2003.02013.x
Jones KL, Krapu GL, Brandt DA, Ashley MV (2005) Population genetic structure in migratory sandhill cranes and the role of Pleistocene glaciations. Mol Ecol 14:2645–2657. doi:10.1111/j.1365-294X.2005.02622.x
Jost L (2008) GST and its relatives do not measure differentiation. Mol Ecol 17:4015–4026. doi:10.1111/j.1365-294X.2008.03887.x
Kerr JT, Pindar A, Galpern P et al (2015) Climate change impacts on bumblebees converge across continents. Science 349:177–180
Kingsford RT, Watson JEM, Lundquist CJ et al (2009) Major conservation policy issues for biodiversity in Oceania. Conserv Biol 23:834–840. doi:10.1111/j.1523-1739.2009.01287.x
Kleijn D, Winfree R, Bartomeus I et al (2015) Delivery of crop pollination services is an insufficient argument for wild pollinator conservation. Nat Commun 6:7414. doi:10.1038/ncomms8414
Kraus FB, Wolf S, Moritz RFA (2009) Male flight distance and population substructure in the bumblebee Bombus terrestris. J Anim Ecol 78:247–252. doi:10.1111/j.1365-2656.2008.01479.x
Kuchta SR, Tan A-M (2005) Isolation by distance and post-glacial range expansion in the rough-skinned newt, Taricha granulosa. Mol Ecol 14:225–244. doi:10.1111/j.1365-294X.2004.02388.x
Kuchta SR, Tan A-M (2006) Lineage diversification on an evolving landscape: phylogeography of the California newt, Taricha torosa (Caudata: Salamandridae). Biol J Linn Soc 89:213–239. doi:10.1111/j.1095-8312.2006.00665.x
Kwon YJ (2008) Bombiculture: a fascinating insect industry for crop pollination in Korea. Entomol Res 38:S66–S70. doi:10.1111/j.1748-5967.2008.00176.x
Lecocq T, Dellicour S, Michez D et al (2013a) Scent of a break-up: phylogeography and reproductive trait divergences in the red-tailed bumblebee (Bombus lapidarius). BMC Evol Biol 13:263. doi:10.1186/1471-2148-13-263
Lecocq T, Vereecken NJ, Michez D et al (2013b) Patterns of genetic and reproductive traits differentiation in Mainland vs. Corsican populations of bumblebees. PLoS One 8:e65642. doi:10.1371/journal.pone.0065642
Lecocq T, Brasero N, Martinet B et al (2015a) Highly polytypic taxon complex: interspecific and intraspecific integrative taxonomic assessment of the widespread pollinator Bombus pascuorum Scopoli 1763 (Hymenoptera: Apidae). Syst Entomol 40:881–888. doi:10.1111/syen.12137
Lecocq T, Brasero N, De Meulemeester T et al (2015b) An integrative taxonomic approach to assess the status of Corsican bumblebees†¯: implications for conservation. Anim Conserv 18:236–248. doi:10.1111/acv.12164
Lecocq T, Dellicour S, Michez D et al (2015c) Methods for species delimitation in bumblebees (Hymenoptera, Apidae, Bombus): towards an integrative approach. Zool Scr 44:281–297. doi:10.1111/zsc.12107
Lecocq T, Coppée A, Michez D et al (2016a) The alien’s identity: consequences of taxonomic status for the international bumblebee trade regulations. Biol Conserv 195:169–176. doi:10.1016/j.biocon.2016.01.004
Lecocq T, Gérard M, Maebe K et al (2016b) Chemical reproductive traits of diploid Bombus terrestris males: Consequences on bumblebee conservation. Insect Sci. doi:10.1111/1744-7917.12332
Lepais O, Darvill B, O’Connor S et al (2010) Estimation of bumblebee queen dispersal distances using sibship reconstruction method. Mol Ecol 19:819–831. doi:10.1111/j.1365-294X.2009.04500.x
López-Uribe MM, Zamudio KR, Cardoso CF, Danforth BN (2014) Climate, physiological tolerance and sex-biased dispersal shape genetic structure of Neotropical orchid bees. Mol Ecol 23:1874–1890. doi:10.1111/mec.12689
López-Uribe MM, Morreale SJ, Santiago CK, Danforth BN (2015) Nest suitability, fine-scale population structure and male-mediated dispersal of a solitary ground nesting bee in an urban landscape. PLoS One 10:e0125719. doi:10.1371/journal.pone.0125719
Lotterhos KE (2012) Nonsignificant isolation by distance implies limited dispersal. Mol Ecol 21:5637–5639. doi:10.1111/mec.12033
Lowe WH, Allendorf FW (2010) What can genetics tell us about population connectivity? Mol Ecol 19:3038–3051. doi:10.1111/j.1365-294X.2010.04688.x
Lozier JD, Strange JP, Stewart IJ, Cameron SA (2011) Patterns of range-wide genetic variation in six North American bumble bee (Apidae: Bombus) species. Mol Ecol 20:4870–4888. doi:10.1111/j.1365-294X.2011.05314.x
Lozier JD, Cameron SA, Duennes MA et al (2015) Relocation risky for bumblebee colonies. Science 350:286–287. doi:10.1126/science.350.6258.286-b
Maes GE, Volckaert FAM (2002) Clinal genetic variation and isolation by distance in the European eel Anguilla anguilla (L.). Biol J Linn Soc 77:509–521. doi:10.1046/j.1095-8312.2002.00124.x
Manel S, Gaggiotti OE, Waples RS (2005) Assignment methods: matching biological questions with appropriate techniques. Trends Ecol Evol 20:136–142. doi:10.1016/j.tree.2004.12.004
Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220
Margules CR, Pressey RL (2000) Systematic conservation planning. Nature 405:243–253. doi:10.1038/35012251
Mock KE, Bentz BJ, O’neill EM et al (2007) Landscape-scale genetic variation in a forest outbreak species, the mountain pine beetle (Dendroctonus ponderosae). Mol Ecol 16:553–568. doi:10.1111/j.1365-294X.2006.03158.x
Monsen KJ, Blouin MS (2004) Extreme isolation by distance in a montane frog Rana cascadae. Conserv Genet 5:827–835. doi:10.1007/s10592-004-1981-z
Morton SR, Hoegh-Guldberg O, Lindenmayer DB et al (2009) The big ecological questions inhibiting effective environmental management in Australia. Austral Ecol 34:1–9. doi:10.1111/j.1442-9993.2008.01938.x
Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583–590
Nieto A, Roberts SPM, Kemp J et al (2014) European Red List of Bees. Publication Office of the European Union, Luxembourg
Oksanen FJ, Blanchet G, Kindt R et al (2011) Vegan: Community Ecology Package.
Ollerton J, Winfree R, Tarrant S (2011) How many flowering plants are pollinated by animals? Oikos 120:321–326. doi:10.1111/j.1600-0706.2010.18644.x
Palsbøll PJ, Bérubé M, Allendorf FW (2007) Identification of management units using population genetic data. Trends Ecol Evol 22:11–16. doi:10.1016/j.tree.2006.09.003
Perfecto I, Vandermeer J (2010) The agroecological matrix as alternative to the land-sparing/agriculture intensification model. Proc Natl Acad Sci USA 107:5786–5791. doi:10.1073/pnas.0905455107
Petrou EL, Seeb JE, Hauser L et al (2014) Fine-scale sampling reveals distinct isolation by distance patterns in chum salmon (Oncorhynchus keta) populations occupying a glacially dynamic environment. Conserv Genet 15:229–243. doi:10.1007/s10592-013-0534-3
Pons O, Petit RJ (1996) Measuring and testing genetic differentiation with ordered versus unordered alleles. Genetics 144:1237–1245
Pope LC, Domingo-Roura X, Erven K, Burke T (2006) Isolation by distance and gene flow in the Eurasian badger (Meles meles) at both a local and broad scale. Mol Ecol 15:371–386. doi:10.1111/j.1365-294X.2005.02815.x
Potts SG, Biesmeijer JC, Bommarco R et al (2011) Developing European conservation and mitigation tools for pollination services: Approaches of the STEP (Status and Trends of European Pollinators) project. J Apic Res 50:152–164. doi:10.1016/j.agee.2009.11.004
Prugnolle F, de Meeus T (2002) Inferring sex-biased dispersal from population genetic tools: a review. Heredity (Edinb) 88:161–165. doi:10.1038/sj.hdy.6800060
Pullin AS, Báldi A, Can OE et al (2009) Conservation focus on Europe: major conservation policy issues that need to be informed by conservation science. Conserv Biol 23:818–824. doi:10.1111/j.1523-1739.2009.01283.x
R Development Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna
Rocha LA, Craig MT, Bowen BW (2007) Phylogeography and the conservation of coral reef fishes. Coral Reefs 26:501–512. doi:10.1007/s00338-007-0261-7
Rousset F (1997) Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145:1219–1228
Rousset (2000) Genetic differentiation between individuals. J Evol Biol 13:58–62. doi:10.1046/j.1420-9101.2000.00137.x
Schmitt T, Giessl A, Seitz A (2003) Did Polyommatus icarus (Lepidoptera: Lycaenidae) have distinct glacial refugia in southern Europe? Evidence from population genetics. Biol J Linn Soc 80:529–538. doi:10.1046/j.1095-8312.2003.00261.x
Segelbacher G, Cushman SA, Epperson BK et al (2010) Applications of landscape genetics in conservation biology: concepts and challenges. Conserv Genet 11:375–385. doi:10.1007/s10592-009-0044-5
Slatkin M (1995) A measure of population subdivision based on microsatellite allele frequencies. Genetics 139:457–462
Steffan-Dewenter I, Münzenberg U, Bürger C et al (2002) Scale-dependent effects of landscape context on three pollinator guilds. Ecology 83:1421–1432
Storfer A, Murphy MA, Spear SF et al (2010) Landscape genetics: where are we now? Mol Ecol 19:3496–3514. doi:10.1111/j.1365-294X.2010.04691.x
Sutherland WJ, Adams WM, Aronson RB et al (2009) One hundred questions of importance to the conservation of global biological diversity. Conserv Biol 23:557–567. doi:10.1111/j.1523-1739.2009.01212.x
Swofford DL (2001) PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). 4.0.b5
Taylor BL, Dizon AE (1999) First policy then science: why a management unit based solely on genetic criteria cannot work. Mol Ecol 8:S11–S16. doi:10.1046/j.1365-294X.1999.00797.x
Vanbergen AJ (2013) Threats to an ecosystem service: pressures on pollinators. Front Ecol Environ 11:251–259. doi:10.1890/120126
Velthuis HHW, van Doorn A (2006) A century of advances in bumblebee domestication and the economic and environmental aspects of its commercialization for pollination. Apidologie 37:421–451. doi:10.1051/apido:2006019
Vepsalainen K, Savolainen R (2000) Are spring mass migrations of bumblebees and wasps driven by vole cyclicity? Oikos 91:401–404. doi:10.1034/j.1600-0706.2000.910221.x
Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution Int J org Evolution 38:1358–1370. doi:10.2307/2408641
Williams PH, Osborne JL (2009) Bumblebee vulnerability and conservation world-wide. Apidologie 40:367–387. doi:10.1051/apido/2009025
Winfree R (2010) The conservation and restoration of wild bees. Ann N Y Acad Sci 1195:169–197. doi:10.1111/j.1749-6632.2010.05449.x
Yanega D (1990) Philopatry and nest founding in a primitively social bee, Halictus rubicundus. Behav Ecol Sociobiol. doi:10.1007/BF00183311
Acknowledgements
We acknowledge Lucy Bailey (London, UK) for correcting the English. This research project was funded by the Belgian Fonds pour la Recherche Scientifique (FRS-FNRS; FRFC 2.4613.10) and the Belgian Science Policy (project BR/132/A1/BELBEES). MG is supported by a grant from the Belgian Fonds pour la Recherche dans l’Industrie et l’Agriculture (FRIA) and SD is post-doctoral research fellow funded by the Fonds Wetenschappelijk Onderzoek (FWO, Flanders, Belgium). This project was supported by the network Bibliothèque du Vivant funded by the CNRS, the Muséum National d’Histoire Naturelle (MNHN) and the Institut National de la Recherche Agronomique (INRA), and technically supported by the Genoscope. We thank the anonymous referees for providing helpful comments and advices.
Author information
Authors and Affiliations
Corresponding authors
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Lecocq, T., Gérard, M., Michez, D. et al. Conservation genetics of European bees: new insights from the continental scale. Conserv Genet 18, 585–596 (2017). https://doi.org/10.1007/s10592-016-0917-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10592-016-0917-3
Keywords
- Conservation
- Europe
- Genetic differentiation
- Isolation by distance
- Wild bees