Advertisement

Conservation Genetics

, Volume 18, Issue 3, pp 585–596 | Cite as

Conservation genetics of European bees: new insights from the continental scale

  • Thomas LecocqEmail author
  • Maxence Gérard
  • Denis Michez
  • Simon DellicourEmail author
Research Article

Abstract

Population connectivity is an important source of information for planning conservation strategy. The degree of connectivity implies using alternative conservation prioritizations based on the appropriate spatial scale for management units. In species with low population connectivity, it is important to preserve local populations in order to maintain the species throughout its range. In contrast, species with high connectivity require extensive management aiming at preserving gene flow through the entire species range. Here we examine at the continental scale the relationship between inter-population/inter-individual genetic and geographical distances to study the isolation-by-distance (IBD) pattern within the European range of nine wild bee species. We then assess the suitability of multi-local or extensive conservation to ensure their long-term survival. Results based on inter-population differences show only two out of nine species with significant IBD. European bee populations seem quite connected when their IBD is compared to IBD of other phyla. However, our results based on inter-individual distances show that eight out of nine species display significant IBD. These different results are presumably a consequence of potential limitations of the inter-population approach. Therefore, we speculate that the inter-population approach could result in inaccurate IBD estimations. This approach should therefore be replaced by the inter-individual approach in order to provide strong supported conservation guidelines. We support multi-local conservation programs based on our analysis of inter-individual distances.

Keywords

Conservation Europe Genetic differentiation Isolation by distance Wild bees 

Notes

Acknowledgements

We acknowledge Lucy Bailey (London, UK) for correcting the English. This research project was funded by the Belgian Fonds pour la Recherche Scientifique (FRS-FNRS; FRFC 2.4613.10) and the Belgian Science Policy (project BR/132/A1/BELBEES). MG is supported by a grant from the Belgian Fonds pour la Recherche dans l’Industrie et l’Agriculture (FRIA) and SD is post-doctoral research fellow funded by the Fonds Wetenschappelijk Onderzoek (FWO, Flanders, Belgium). This project was supported by the network Bibliothèque du Vivant funded by the CNRS, the Muséum National d’Histoire Naturelle (MNHN) and the Institut National de la Recherche Agronomique (INRA), and technically supported by the Genoscope. We thank the anonymous referees for providing helpful comments and advices.

Supplementary material

10592_2016_917_MOESM1_ESM.zip (90 kb)
Supplementary material 1 (ZIP 90 KB)
10592_2016_917_MOESM2_ESM.pdf (3.4 mb)
Supplementary material 2 (PDF 3495 KB)

References

  1. Amézquita A, Lima AP, Jehle R et al (2009) Calls, colours, shape, and genes: a multi-trait approach to the study of geographic variation in the Amazonian frog Allobates femoralis. Biol J Linn Soc 98:826–838. doi: 10.1111/j.1095-8312.2009.01324.x CrossRefGoogle Scholar
  2. Avise JC (2000) Phylogeography: the history and formation of species. Harvard University Press, CambridgeGoogle Scholar
  3. Banks SAMC, Peakall ROD (2012) Genetic spatial autocorrelation can readily detect sex-biased dispersal. Mol Ecol 21:2092–2105. doi: 10.1111/j.1365-294X.2012.05485.x CrossRefPubMedGoogle Scholar
  4. Batalha-Filho H, Waldschmidt AM, Campos LAO et al (2010) Phylogeography and historical demography of the neotropical stingless bee Melipona quadrifasciata (Hymenoptera, Apidae): incongruence between morphology and mitochondrial DNA. Apidologie 41:534–547. doi: 10.1051/apido/2010001 CrossRefGoogle Scholar
  5. Brito PH (2007) Contrasting patterns of mitochondrial and microsatellite genetic structure among Western European populations of tawny owls (Strix aluco). Mol Ecol 16:3423–3437. doi: 10.1111/j.1365-294X.2007.03401.x CrossRefPubMedGoogle Scholar
  6. Broquet T, Petit EJ (2009) Molecular estimation of dispersal for ecology and population genetics. Annu Rev Ecol Evol Syst 40:193–216. doi: 10.1146/annurev.ecolsys.110308.120324 CrossRefGoogle Scholar
  7. Cerântola N de CM, Oi CA, Cervini M, Lama MA (2011) Genetic differentiation of urban populations of Euglossa cordata from the state of São Paulo, Brazil. Apidologie 42:214–222. doi: 10.1051/apido/2010055 CrossRefGoogle Scholar
  8. Crispo E, Hendry AP (2005) Does time since colonization influence isolation by distance? A meta-analysis. Conserv Genet 6:665–682. doi: 10.1007/s10592-005-9026-4 CrossRefGoogle Scholar
  9. Crozier RH (1977) Evolutionary genetics of the Hymenoptera. Annu Rev Entomol 22:263–288CrossRefGoogle Scholar
  10. Dannewitz J, Maes GE, Johansson L et al (2005) Panmixia in the European eel: a matter of time. Proc R Soc B Biol Sci 272:1129–1137. doi: 10.1098/rspb.2005.3064 CrossRefGoogle Scholar
  11. De Barro PJ (2005) Genetic structure of the whitefly Bemisia tabaci in the Asia-Pacific region revealed using microsatellite markers. Mol Ecol 14:3695–3718. doi: 10.1111/j.1365-294X.2005.02700.x CrossRefPubMedGoogle Scholar
  12. Dellicour S, Mardulyn P (2014) SPADS 1.0: a toolbox to perform spatial analyses on DNA sequence data sets. Mol Ecol Resour 14:647–651. doi: 10.1111/1755-0998.12200 CrossRefPubMedGoogle Scholar
  13. Dellicour S, Mardulyn P, Hardy OJ et al (2014) Inferring the mode of colonization of the rapid range expansion of a solitary bee from multilocus DNA sequence variation. J Evol Biol 27:116–132. doi: 10.1111/jeb.12280 CrossRefPubMedGoogle Scholar
  14. Dellicour S, Michez D, Mardulyn P (2015a) Comparative phylogeography of five bumblebees: impact of range fragmentation, range size and diet specialization. Biol J Linn Soc 116:926–939. doi: 10.1111/bij.12636 CrossRefGoogle Scholar
  15. Dellicour S, Michez D, Rasplus J-Y, Mardulyn P (2015b) Impact of past climatic changes and resource availability on the population demography of three food-specialist bees. Mol Ecol 24:1074–1090. doi: 10.1111/mec.13085 CrossRefPubMedGoogle Scholar
  16. Dellicour S, Kastally C, Varela S et al (2016) Ecological niche modelling and coalescent simulations to explore the recent geographic range history of five widespread bumblebee species in Europe. J. Biogeogr. in press. doi: 10.1111/jbi.12748 Google Scholar
  17. Department for Environment, Food and Rural Affairs (2014) The National Pollinator Strategy: for bees and other pollinators in England. Department for Environment, Food and Rural Affairs, London, UKGoogle Scholar
  18. Doerr VAJ, Barrett T, Doerr ED (2011) Connectivity, dispersal behaviour and conservation under climate change: a response to Hodgson et al. J Appl Ecol 48:143–147. doi: 10.1111/j.1365-2664.2010.01899.x CrossRefGoogle Scholar
  19. Driscoll DA, Banks SC, Barton PS et al (2014) The trajectory of dispersal research in conservation biology. Systematic review. PLoS One 9:e95053. doi: 10.1371/journal.pone.0095053 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Duennes MA, Lozier JD, Hines HM, Cameron SA (2012) Geographical patterns of genetic divergence in the widespread Mesoamerican bumble bee Bombus ephippiatus (Hymenoptera: Apidae). Mol Phylogenet Evol 64:219–231. doi: 10.1016/j.ympev.2012.03.018 CrossRefPubMedGoogle Scholar
  21. Erler S, Lattorff HMG (2010) The degree of parasitism of the bumblebee (Bombus terrestris) by cuckoo bumblebees (Bombus (Psithyrus) vestalis). Insectes Soc 57:371–377. doi: 10.1007/s00040-010-0093-2 CrossRefGoogle Scholar
  22. Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: Application to human mitochondrial DNA restriction data. Genetics 131:479–491PubMedPubMedCentralGoogle Scholar
  23. Fields Development Team (2006) Fields: Tools for Spatial DataGoogle Scholar
  24. Fortel L, Henry M, Guilbaud L et al (2014) Decreasing abundance, increasing diversity and changing structure of the wild bee community (Hymenoptera: Anthophila) along an urbanization gradient. PLoS One 9:e104679. doi: 10.1371/journal.pone.0104679 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Frankham R, Ballou JD, Briscoe DA (2010) Introduction to conservation genetics, 2nd edn. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  26. Gadgil M (1971) Dispersal: Population Consequences and Evolution. Ecology 52:253. doi: 10.2307/1934583 CrossRefGoogle Scholar
  27. Gammans N, Banks B, Edwards M (2009) The return of the native: Loss and repatriation of the short-haired bumblebee Bombus subterraneus. Br Wildl 21:116–118Google Scholar
  28. Garibaldi LA, Steffan-Dewenter I, Winfree R et al (2013) Wild pollinators enhance fruit set of crops regardless of honey bee abundance. Science 339:1608–1611. doi: 10.1126/science.1230200 CrossRefPubMedGoogle Scholar
  29. Goulson D, Nicholls E, Botías C, Rotheray EL (2015) Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science 347:1255957. doi: 10.1126/science.1255957 CrossRefPubMedGoogle Scholar
  30. Hewitt GM (1996) Some genetic consequences of ice ages, and their role in divergence and speciation. Biol J Linn Soc 58:247–276. doi: 10.1006/bijl.1996.0035 CrossRefGoogle Scholar
  31. Hines HM, Williams PH (2012) Mimetic colour pattern evolution in the highly polymorphic Bombus trifasciatus (Hymenoptera: Apidae) species complex and its comimics. Zool J Linn Soc 166:805–826. doi: 10.1111/j.1096-3642.2012.00861.x CrossRefGoogle Scholar
  32. Holzschuh A, Steffan-Dewenter I, Tscharntke T (2009) Grass strip corridors in agricultural landscapes enhance nest-site colonization by solitary wasps. Ecol Appl 19:123–132. doi: 10.1890/08-0384.1 CrossRefPubMedGoogle Scholar
  33. James CH, Moritz C (2000) Intraspecific phylogeography in the sedge frog Litoria fallax (Hylidae) indicates pre-Pleistocene vicariance of an open forest species from eastern Australia. Mol Ecol 9:349–358. doi: 10.1046/j.1365-294x.2000.00885.x CrossRefPubMedGoogle Scholar
  34. Jin L, Chakraborty R (1994) Estimation of genetic distance and coefficient of gene diversity from single-probe multilocus DNA fingerprinting data. Mol Biol Evol 11:120–127PubMedGoogle Scholar
  35. Johnson JA, Toepfer JE, Dunn PO (2003) Contrasting patterns of mitochondrial and microsatellite population structure in fragmented populations of greater prairie-chickens. Mol Ecol 12:3335–3347. doi: 10.1046/j.1365-294X.2003.02013.x CrossRefPubMedGoogle Scholar
  36. Jones KL, Krapu GL, Brandt DA, Ashley MV (2005) Population genetic structure in migratory sandhill cranes and the role of Pleistocene glaciations. Mol Ecol 14:2645–2657. doi: 10.1111/j.1365-294X.2005.02622.x CrossRefPubMedGoogle Scholar
  37. Jost L (2008) GST and its relatives do not measure differentiation. Mol Ecol 17:4015–4026. doi: 10.1111/j.1365-294X.2008.03887.x CrossRefPubMedGoogle Scholar
  38. Kerr JT, Pindar A, Galpern P et al (2015) Climate change impacts on bumblebees converge across continents. Science 349:177–180CrossRefPubMedGoogle Scholar
  39. Kingsford RT, Watson JEM, Lundquist CJ et al (2009) Major conservation policy issues for biodiversity in Oceania. Conserv Biol 23:834–840. doi: 10.1111/j.1523-1739.2009.01287.x CrossRefPubMedGoogle Scholar
  40. Kleijn D, Winfree R, Bartomeus I et al (2015) Delivery of crop pollination services is an insufficient argument for wild pollinator conservation. Nat Commun 6:7414. doi: 10.1038/ncomms8414 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Kraus FB, Wolf S, Moritz RFA (2009) Male flight distance and population substructure in the bumblebee Bombus terrestris. J Anim Ecol 78:247–252. doi: 10.1111/j.1365-2656.2008.01479.x CrossRefPubMedGoogle Scholar
  42. Kuchta SR, Tan A-M (2005) Isolation by distance and post-glacial range expansion in the rough-skinned newt, Taricha granulosa. Mol Ecol 14:225–244. doi: 10.1111/j.1365-294X.2004.02388.x CrossRefPubMedGoogle Scholar
  43. Kuchta SR, Tan A-M (2006) Lineage diversification on an evolving landscape: phylogeography of the California newt, Taricha torosa (Caudata: Salamandridae). Biol J Linn Soc 89:213–239. doi: 10.1111/j.1095-8312.2006.00665.x CrossRefGoogle Scholar
  44. Kwon YJ (2008) Bombiculture: a fascinating insect industry for crop pollination in Korea. Entomol Res 38:S66–S70. doi: 10.1111/j.1748-5967.2008.00176.x CrossRefGoogle Scholar
  45. Lecocq T, Dellicour S, Michez D et al (2013a) Scent of a break-up: phylogeography and reproductive trait divergences in the red-tailed bumblebee (Bombus lapidarius). BMC Evol Biol 13:263. doi: 10.1186/1471-2148-13-263 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Lecocq T, Vereecken NJ, Michez D et al (2013b) Patterns of genetic and reproductive traits differentiation in Mainland vs. Corsican populations of bumblebees. PLoS One 8:e65642. doi: 10.1371/journal.pone.0065642 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Lecocq T, Brasero N, Martinet B et al (2015a) Highly polytypic taxon complex: interspecific and intraspecific integrative taxonomic assessment of the widespread pollinator Bombus pascuorum Scopoli 1763 (Hymenoptera: Apidae). Syst Entomol 40:881–888. doi: 10.1111/syen.12137 CrossRefGoogle Scholar
  48. Lecocq T, Brasero N, De Meulemeester T et al (2015b) An integrative taxonomic approach to assess the status of Corsican bumblebees†¯: implications for conservation. Anim Conserv 18:236–248. doi: 10.1111/acv.12164 CrossRefGoogle Scholar
  49. Lecocq T, Dellicour S, Michez D et al (2015c) Methods for species delimitation in bumblebees (Hymenoptera, Apidae, Bombus): towards an integrative approach. Zool Scr 44:281–297. doi: 10.1111/zsc.12107 CrossRefGoogle Scholar
  50. Lecocq T, Coppée A, Michez D et al (2016a) The alien’s identity: consequences of taxonomic status for the international bumblebee trade regulations. Biol Conserv 195:169–176. doi: 10.1016/j.biocon.2016.01.004 CrossRefGoogle Scholar
  51. Lecocq T, Gérard M, Maebe K et al (2016b) Chemical reproductive traits of diploid Bombus terrestris males: Consequences on bumblebee conservation. Insect Sci. doi: 10.1111/1744-7917.12332 Google Scholar
  52. Lepais O, Darvill B, O’Connor S et al (2010) Estimation of bumblebee queen dispersal distances using sibship reconstruction method. Mol Ecol 19:819–831. doi: 10.1111/j.1365-294X.2009.04500.x CrossRefPubMedGoogle Scholar
  53. López-Uribe MM, Zamudio KR, Cardoso CF, Danforth BN (2014) Climate, physiological tolerance and sex-biased dispersal shape genetic structure of Neotropical orchid bees. Mol Ecol 23:1874–1890. doi: 10.1111/mec.12689 CrossRefPubMedGoogle Scholar
  54. López-Uribe MM, Morreale SJ, Santiago CK, Danforth BN (2015) Nest suitability, fine-scale population structure and male-mediated dispersal of a solitary ground nesting bee in an urban landscape. PLoS One 10:e0125719. doi: 10.1371/journal.pone.0125719 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Lotterhos KE (2012) Nonsignificant isolation by distance implies limited dispersal. Mol Ecol 21:5637–5639. doi: 10.1111/mec.12033 CrossRefPubMedGoogle Scholar
  56. Lowe WH, Allendorf FW (2010) What can genetics tell us about population connectivity? Mol Ecol 19:3038–3051. doi: 10.1111/j.1365-294X.2010.04688.x CrossRefPubMedGoogle Scholar
  57. Lozier JD, Strange JP, Stewart IJ, Cameron SA (2011) Patterns of range-wide genetic variation in six North American bumble bee (Apidae: Bombus) species. Mol Ecol 20:4870–4888. doi: 10.1111/j.1365-294X.2011.05314.x CrossRefPubMedGoogle Scholar
  58. Lozier JD, Cameron SA, Duennes MA et al (2015) Relocation risky for bumblebee colonies. Science 350:286–287. doi: 10.1126/science.350.6258.286-b CrossRefPubMedGoogle Scholar
  59. Maes GE, Volckaert FAM (2002) Clinal genetic variation and isolation by distance in the European eel Anguilla anguilla (L.). Biol J Linn Soc 77:509–521. doi: 10.1046/j.1095-8312.2002.00124.x CrossRefGoogle Scholar
  60. Manel S, Gaggiotti OE, Waples RS (2005) Assignment methods: matching biological questions with appropriate techniques. Trends Ecol Evol 20:136–142. doi: 10.1016/j.tree.2004.12.004 CrossRefPubMedGoogle Scholar
  61. Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220PubMedGoogle Scholar
  62. Margules CR, Pressey RL (2000) Systematic conservation planning. Nature 405:243–253. doi: 10.1038/35012251 CrossRefPubMedGoogle Scholar
  63. Mock KE, Bentz BJ, O’neill EM et al (2007) Landscape-scale genetic variation in a forest outbreak species, the mountain pine beetle (Dendroctonus ponderosae). Mol Ecol 16:553–568. doi: 10.1111/j.1365-294X.2006.03158.x CrossRefPubMedGoogle Scholar
  64. Monsen KJ, Blouin MS (2004) Extreme isolation by distance in a montane frog Rana cascadae. Conserv Genet 5:827–835. doi: 10.1007/s10592-004-1981-z CrossRefGoogle Scholar
  65. Morton SR, Hoegh-Guldberg O, Lindenmayer DB et al (2009) The big ecological questions inhibiting effective environmental management in Australia. Austral Ecol 34:1–9. doi: 10.1111/j.1442-9993.2008.01938.x CrossRefGoogle Scholar
  66. Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583–590PubMedPubMedCentralGoogle Scholar
  67. Nieto A, Roberts SPM, Kemp J et al (2014) European Red List of Bees. Publication Office of the European Union, LuxembourgGoogle Scholar
  68. Oksanen FJ, Blanchet G, Kindt R et al (2011) Vegan: Community Ecology Package.Google Scholar
  69. Ollerton J, Winfree R, Tarrant S (2011) How many flowering plants are pollinated by animals? Oikos 120:321–326. doi: 10.1111/j.1600-0706.2010.18644.x CrossRefGoogle Scholar
  70. Palsbøll PJ, Bérubé M, Allendorf FW (2007) Identification of management units using population genetic data. Trends Ecol Evol 22:11–16. doi: 10.1016/j.tree.2006.09.003 CrossRefPubMedGoogle Scholar
  71. Perfecto I, Vandermeer J (2010) The agroecological matrix as alternative to the land-sparing/agriculture intensification model. Proc Natl Acad Sci USA 107:5786–5791. doi: 10.1073/pnas.0905455107 CrossRefPubMedPubMedCentralGoogle Scholar
  72. Petrou EL, Seeb JE, Hauser L et al (2014) Fine-scale sampling reveals distinct isolation by distance patterns in chum salmon (Oncorhynchus keta) populations occupying a glacially dynamic environment. Conserv Genet 15:229–243. doi: 10.1007/s10592-013-0534-3 CrossRefGoogle Scholar
  73. Pons O, Petit RJ (1996) Measuring and testing genetic differentiation with ordered versus unordered alleles. Genetics 144:1237–1245PubMedPubMedCentralGoogle Scholar
  74. Pope LC, Domingo-Roura X, Erven K, Burke T (2006) Isolation by distance and gene flow in the Eurasian badger (Meles meles) at both a local and broad scale. Mol Ecol 15:371–386. doi: 10.1111/j.1365-294X.2005.02815.x CrossRefPubMedGoogle Scholar
  75. Potts SG, Biesmeijer JC, Bommarco R et al (2011) Developing European conservation and mitigation tools for pollination services: Approaches of the STEP (Status and Trends of European Pollinators) project. J Apic Res 50:152–164. doi: 10.1016/j.agee.2009.11.004 CrossRefGoogle Scholar
  76. Prugnolle F, de Meeus T (2002) Inferring sex-biased dispersal from population genetic tools: a review. Heredity (Edinb) 88:161–165. doi: 10.1038/sj.hdy.6800060 CrossRefPubMedGoogle Scholar
  77. Pullin AS, Báldi A, Can OE et al (2009) Conservation focus on Europe: major conservation policy issues that need to be informed by conservation science. Conserv Biol 23:818–824. doi: 10.1111/j.1523-1739.2009.01283.x CrossRefPubMedGoogle Scholar
  78. R Development Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  79. Rocha LA, Craig MT, Bowen BW (2007) Phylogeography and the conservation of coral reef fishes. Coral Reefs 26:501–512. doi: 10.1007/s00338-007-0261-7 CrossRefGoogle Scholar
  80. Rousset F (1997) Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145:1219–1228PubMedPubMedCentralGoogle Scholar
  81. Rousset (2000) Genetic differentiation between individuals. J Evol Biol 13:58–62. doi: 10.1046/j.1420-9101.2000.00137.x CrossRefGoogle Scholar
  82. Schmitt T, Giessl A, Seitz A (2003) Did Polyommatus icarus (Lepidoptera: Lycaenidae) have distinct glacial refugia in southern Europe? Evidence from population genetics. Biol J Linn Soc 80:529–538. doi: 10.1046/j.1095-8312.2003.00261.x CrossRefGoogle Scholar
  83. Segelbacher G, Cushman SA, Epperson BK et al (2010) Applications of landscape genetics in conservation biology: concepts and challenges. Conserv Genet 11:375–385. doi: 10.1007/s10592-009-0044-5 CrossRefGoogle Scholar
  84. Slatkin M (1995) A measure of population subdivision based on microsatellite allele frequencies. Genetics 139:457–462PubMedPubMedCentralGoogle Scholar
  85. Steffan-Dewenter I, Münzenberg U, Bürger C et al (2002) Scale-dependent effects of landscape context on three pollinator guilds. Ecology 83:1421–1432CrossRefGoogle Scholar
  86. Storfer A, Murphy MA, Spear SF et al (2010) Landscape genetics: where are we now? Mol Ecol 19:3496–3514. doi: 10.1111/j.1365-294X.2010.04691.x CrossRefPubMedGoogle Scholar
  87. Sutherland WJ, Adams WM, Aronson RB et al (2009) One hundred questions of importance to the conservation of global biological diversity. Conserv Biol 23:557–567. doi: 10.1111/j.1523-1739.2009.01212.x CrossRefPubMedGoogle Scholar
  88. Swofford DL (2001) PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). 4.0.b5Google Scholar
  89. Taylor BL, Dizon AE (1999) First policy then science: why a management unit based solely on genetic criteria cannot work. Mol Ecol 8:S11–S16. doi: 10.1046/j.1365-294X.1999.00797.x CrossRefPubMedGoogle Scholar
  90. Vanbergen AJ (2013) Threats to an ecosystem service: pressures on pollinators. Front Ecol Environ 11:251–259. doi: 10.1890/120126 CrossRefGoogle Scholar
  91. Velthuis HHW, van Doorn A (2006) A century of advances in bumblebee domestication and the economic and environmental aspects of its commercialization for pollination. Apidologie 37:421–451. doi: 10.1051/apido:2006019 CrossRefGoogle Scholar
  92. Vepsalainen K, Savolainen R (2000) Are spring mass migrations of bumblebees and wasps driven by vole cyclicity? Oikos 91:401–404. doi: 10.1034/j.1600-0706.2000.910221.x CrossRefGoogle Scholar
  93. Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution Int J org Evolution 38:1358–1370. doi: 10.2307/2408641 CrossRefGoogle Scholar
  94. Williams PH, Osborne JL (2009) Bumblebee vulnerability and conservation world-wide. Apidologie 40:367–387. doi: 10.1051/apido/2009025 CrossRefGoogle Scholar
  95. Winfree R (2010) The conservation and restoration of wild bees. Ann N Y Acad Sci 1195:169–197. doi: 10.1111/j.1749-6632.2010.05449.x CrossRefPubMedGoogle Scholar
  96. Yanega D (1990) Philopatry and nest founding in a primitively social bee, Halictus rubicundus. Behav Ecol Sociobiol. doi: 10.1007/BF00183311 Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Research Unit Animal and Functionalities of Animal Products (URAFPA)University of Lorraine INRAVandœuvre-lès-Nancy Cedex 09France
  2. 2.Laboratory of Zoology, Research Institute of BiosciencesUniversity of MonsMonsBelgium
  3. 3.Department of Microbiology and Immunology, Rega Institute for Medical Research, Clinical and Epidemiological VirologyKU Leuven—University of LeuvenLeuvenBelgium

Personalised recommendations