Skip to main content
Log in

Investigating genetic introgression from farmed red foxes into the wild population in Newfoundland, Canada

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

Fur-animal farms can affect the genetic constitution of wild conspecifics through escape and subsequent interbreeding. We studied this problem in red foxes (Vulpes vulpes) on the Canadian island of Newfoundland, where a large commercial fox farm (the only large farm on the island) has operated adjacent to the native wild red fox population for >30 years. To test for gene flow from these fur-farm foxes into the wild population, we compared mitochondrial DNA (mtDNA) sequences and nuclear microsatellite genotypes (21 loci) of 93 individuals from the fox farm to those of 79 modern wild foxes sampled from across the island. For reference, we also included 12 historical museum specimens of wild eastern Canadian red fox, all of which were sampled before the introduction of fur farming in the region. Many mtDNA haplotypes were shared among contemporary farmed and wild foxes and the historical eastern Canadian samples, as expected based on the eastern Canadian origin of fur-farming. However, only the fur farm additionally contained haplotypes originating from other parts of North America. More significantly, microsatellite markers, which reflect contemporary gene flow, indicated strong differentiation (F ST ≥ 0.14, P < 0.001) between fur-farm and wild foxes (including the historical samples) and little to no gene flow between them. Admixture and principle components analyses similarly supported clear separation of fur-farm and wild red foxes. Together, these findings indicate that the presence of a large red fox fur farm had little, if any, effect on the genetic constitution of the native wild population in Newfoundland. Tight biosecurity (lack of escapees) or failure of captive-reared foxes to establish in the presence of native wild foxes could explain these findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Allendorf FW, Leary RF, Spruell P, Wenburg JK (2001) The problems with hybrids: setting conservation guidelines. Trends Ecol Evol 16:613–622

    Article  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  • Anonymous (1917) Newfoundland Fur Industry. J R Soc Arts 65:483–484

    Google Scholar 

  • Aubry K (1984) The recent history and present distribution of the red fox in Washington

  • Aubry KB, Statham MJ, Sacks BN, Perrine JD, Wisely SM (2009) Phylogeography of the North American red fox: vicariance in Pleistocene forest refugia. Mol Ecol 18:2668–2686

    Article  CAS  PubMed  Google Scholar 

  • Balcom A (1916) Fox farming in Prince Edward Island: a chapter in the history of speculation. Q J Econ 30:665–681

    Article  Google Scholar 

  • Beauclerc KB, Bowman J, Schulte-Hostedde AI (2013) Assessing the cryptic invasion of a domestic conspecific: American mink in their native range. Ecol Evol 3:2296–2309

    Article  PubMed  PubMed Central  Google Scholar 

  • Bennett SN, Olson JR, Kershner JL, Corbett P (2010) Propagule pressure and stream characteristics influence introgression: cutthroat and rainbow trout in British Columbia. Ecol Appl 20:263–277

    Article  PubMed  Google Scholar 

  • Bourret V, O’reilly P, Carr J, Berg P, Bernatchez L (2011) Temporal change in genetic integrity suggests loss of local adaptation in a wild Atlantic salmon (Salmo salar) population following introgression by farmed escapees. Heredity 106:500–510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carter J, Leonard BP (2002) A review of the literature on the worldwide distribution, spread of, and efforts to eradicate the coypu (Myocastor coypus). Wildl Soc Bull 30:162–175

    Google Scholar 

  • Champagnon J, Elmberg J, Guillemain M, Gauthier-Clerc M, Lebreton J-D (2012) Conspecifics can be aliens too: a review of effects of restocking practices in vertebrates. J Nat Conserv 20:231–241

    Article  Google Scholar 

  • Denisov GA, Arehart AB, Curtin MD (2004) A system and method for improving the accuracy of DNA sequencing and error probability estimation through application of a mathematical model to the analysis of electropherograms. US Patent 6681186

  • Earl DA, vonHoldt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Res 4:359–361

    Article  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Excoffier L, Lischer HE (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Res 10:564–567

    Article  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2003) Inference of population structure: extensions to linked loci and correlated allele frequencies. Genetics 164:1567–1587

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gering E, Johnsson M, Willis P, Getty T, Wright D (2015) Mixed ancestry and admixture in Kauai’s feral chickens: invasion of domestic genes into ancient Red Junglefowl reservoirs. Mol Ecol 24:2112–2124

    Article  CAS  PubMed  Google Scholar 

  • Gil-Sánchez J, Jaramillo J, Barea-Azcón J (2015) Strong spatial segregation between wildcats and domestic cats may explain low hybridization rates on the Iberian Peninsula. Zoology 118:377–385

    Article  PubMed  Google Scholar 

  • Goedbloed D, Megens H, Van Hooft P, Herrero-Medrano J, Lutz W, Alexandri P, Crooijmans R, Groenen M, Van Wieren S, Ydenberg R (2013) Genome-wide single nucleotide polymorphism analysis reveals recent genetic introgression from domestic pigs into Northwest European wild boar populations. Mol Ecol 22:856–866

    Article  CAS  PubMed  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Hammershøj M, Pertoldi C, Asferg T, Møller TB, Kristensen NB (2005) Danish free-ranging mink populations consist mainly of farm animals: evidence from microsatellite and stable isotope analyses. J Nat Conserv 13:267–274

    Article  Google Scholar 

  • Jeffery RA, Lankester MW, McGrath MJ, Whitney HG (2004) Angiostrongylus vasorum and Crenosoma vulpis in red foxes (Vulpes vulpes) in Newfoundland, Canada. Can J Zool 82:66–74

    Article  Google Scholar 

  • Jombart T (2008) adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24:1403–1405

    Article  CAS  PubMed  Google Scholar 

  • Kasprowicz AE, Statham MJ, Sacks BN (2016) Fate of the other redcoat: remnants of colonial British foxes in the Eastern United States. J Mammal 97:298–309

    Article  Google Scholar 

  • Kauhala K, Kowalczyk R (2011) Invasion of the raccoon dog Nyctereutes procyonoides in Europe: history of colonization, features behind its success, and threats to native fauna. Curr Zool 57:584–598

    Article  Google Scholar 

  • Kidd A, Bowman J, Lesbarreres D, Schulte-Hostedded A (2009) Hybridization between escaped domestic and wild American mink (Neovison vison). Mol Ecol 18:1175–1186

    Article  CAS  PubMed  Google Scholar 

  • Laikre L, Schwartz MK, Waples RS, Ryman N (2010) Compromising genetic diversity in the wild: unmonitored large-scale release of plants and animals. Trends Ecol Evol 25:520–529

    Article  PubMed  Google Scholar 

  • Langille BL, O’Leary KE, Whitney HG, Marshall HD (2014) Mitochondrial DNA diversity and phylogeography of insular Newfoundland red foxes (Vulpes vulpes deletrix). J Mammal 95:772–780

    Article  Google Scholar 

  • Laut AC (1921) The fur trade of America. Macmillan, New York

    Google Scholar 

  • Le Roux JJ, Foxcroft LC, Herbst M, MacFadyen S (2015) Genetic analysis shows low levels of hybridization between African wildcats (Felis silvestris lybica) and domestic cats (F. s. catus) in South Africa. Ecol Evol 5:288–299

    Article  PubMed  Google Scholar 

  • Lewis JC, Sallee KL, Golightly RT (1993) Introduced red fox in California. State of California, the Resources Agency, Department of Fish and Game, Wildlife Management Division

  • Mager KH, Colson KE, Hundertmark KJ (2013) High genetic connectivity and introgression from domestic reindeer characterize northern Alaska caribou herds. Conserv Genet 14:1111–1123

    Article  Google Scholar 

  • McGinnity P, Prodöhl P, Ferguson A, Hynes R, ó Maoiléidigh N, Baker N, Cotter D, O’Hea B, Cooke D, Rogan G (2003) Fitness reduction and potential extinction of wild populations of Atlantic salmon, salmo salar, as a result of interactions with escaped farm salmon. Proc R Soc Lond B 270:2443–2450

    Article  Google Scholar 

  • Moore M, Brown S, Sacks B (2010) Thirty-one short red fox (Vulpes vulpes) microsatellite markers. Mol Ecol Res 10:404–408

    Article  Google Scholar 

  • Noren K, Dalen L, Kvaløy K, Angerbjörn A (2005) Detection of farm fox and hybrid genotypes among wild arctic foxes in Scandinavia. Conserv Genet 6:885–894

    Article  CAS  Google Scholar 

  • Paradis E (2010) pegas: an R package for population genetics with an integrated–modular approach. Bioinformatics 26:419–420

    Article  CAS  PubMed  Google Scholar 

  • Perrine JD, Pollinger JP, Sacks BN, Barrett RH, Wayne RK (2007) Genetic evidence for the persistence of the critically endangered Sierra Nevada red fox in California. Conserv Genet 8:1083–1095

    Article  Google Scholar 

  • Petersen M (1914) The fur traders and fur bearing animals. Hammond Press, Pittsburg

    Book  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Randi E (2008) Detecting hybridization between wild species and their domesticated relatives. Mol Ecol 17:285–293

    Article  PubMed  Google Scholar 

  • Rhymer JM, Simberloff D (1996) Extinction by hybridization and introgression. Annu Rev Ecol Syst 27:83–109

    Article  Google Scholar 

  • Robertson A, Hill WG (1984) Deviations from Hardy-Weinberg proportions: sampling variances and use in estimation of inbreeding coefficients. Genetics 107:703–718

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sacks BN, Statham MJ, Perrine JD, Wisely SM, Aubry KB (2010) North American montane red foxes: expansion, fragmentation, and the origin of the Sacramento Valley red fox. Conserv Genet 11:1523–1539

    Article  Google Scholar 

  • Sacks BN, Moore M, Statham MJ, Wittmer HU (2011) A restricted hybrid zone between native and introduced red fox (Vulpes vulpes) populations suggests reproductive barriers and competitive exclusion. Mol Ecol 20:326–341

    Article  PubMed  Google Scholar 

  • Sacks BN, Brazeal JL, Lewis JC (2016) Landscape genetics of the nonnative red fox of California. Ecol Evol 6:4775–4791

    Article  PubMed  PubMed Central  Google Scholar 

  • Statham MJ, Trut LN, Sacks BN, Kharlamova AV, Oskina IN, Gulevich RG, Johnson JL, Temnykh SV, Acland GM, Kukekova AV (2011) On the origin of a domesticated species: identifying the parent population of Russian silver foxes (Vulpes vulpes). Biol J Linn Soc 103:168–175

    Article  Google Scholar 

  • Statham MJ, Sacks BN, Aubry KB, Perrine JD, Wisely SM (2012) The origin of recently established red fox populations in the United States: translocations or natural range expansions? J Mammal 93:52–65

    Article  Google Scholar 

  • Statham MJ, Murdoch J, Janecka J, Aubry KB, Edwards CJ, Soulsbury CD, Berry O, Wang Z, Harrison D, Pearch M, Tomsett L (2014) Range-wide multilocus phylogeography of the red fox reveals ancient continental divergence, minimal genomic exchange and distinct demographic histories. Mol Ecol 23:4813–4830

    Article  PubMed  Google Scholar 

  • Stronen AV, Paquet PC (2013) Perspectives on the conservation of wild hybrids. Biol Conserv 167:390–395

    Article  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toonen RJ, Hughes S (2001) Increased throughput for fragment analysis on an ABI Prism® 377 automated sequencer using a membrane comb and STRand software. Biotechniques 31:1320–1325

    CAS  PubMed  Google Scholar 

  • Volkmann LA, Statham MJ, Mooers AØ, Sacks BN (2015) Genetic distinctiveness of red foxes in the Intermountain West as revealed through expanded mitochondrial sequencing. J Mammal 96:297–307

    Article  Google Scholar 

  • Wandeler P, Funk S (2006) Short microsatellite DNA markers for the red fox (Vulpes vulpes). Mol Ecol Notes 6:98–100

    Article  CAS  Google Scholar 

  • Wisely SM, Madonado JE, Fleischer RC (2004) A technique for sampling ancient DNA that minimizes damage to museum specimens. Conserv Genet 5:105–107

    Article  CAS  Google Scholar 

  • Wolf DE, Takebayashi N, Rieseberg LH (2001) Predicting the risk of extinction through hybridization. Conserv Biol 15:1039–1105

    Article  Google Scholar 

Download references

Acknowledgements

We thank Siobhan Aamoth for assistance with laboratory procedures. Support for this research was provided by the Mammalian Ecology and Conservation Unit at the University of California, Davis. We thank M & E Weisman and many Newfoundland trappers for contributing genetic samples for this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin N. Sacks.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (CSV 48 kb)

Supplementary material 2 (DOCX 697 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lounsberry, Z.T., Quinn, C.B., Statham, M.J. et al. Investigating genetic introgression from farmed red foxes into the wild population in Newfoundland, Canada. Conserv Genet 18, 383–392 (2017). https://doi.org/10.1007/s10592-016-0914-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-016-0914-6

Keywords

Navigation