Conservation Genetics

, Volume 18, Issue 3, pp 553–572 | Cite as

Population genetics and geometric morphometrics of the Bombus ephippiatus species complex with implications for its use as a commercial pollinator

  • Michelle A. Duennes
  • Chris Petranek
  • Esteban Pineda Diez de Bonilla
  • Jorge Mérida-Rivas
  • Oscar Martinez-López
  • Philippe Sagot
  • Rémy Vandame
  • Sydney A. Cameron
Research Article

Abstract

Mexico and Central America are among the most biodiverse regions on Earth, harboring many species with high levels of interpopulation morphological and genetic diversity. The mountainous topography of this region contains isolated sky island habitats that have the potential to promote speciation. This has been studied in vertebrates, yet few studies have examined the phylogeographic and genetic structure of insect species encompassing this region. Here we investigate geographic patterns of genetic and morphological divergence and speciation among widespread populations of the highly polymorphic bumble bee Bombus ephippiatus and its closest relative B. wilmattae. We used DNA sequences from a fragment of cytochrome oxidase I (COI), genotypes for twelve microsatellite markers, and morphometric data from wings to construct a well-supported inference of the divergences among these taxa. We have found complex patterns of genetic isolation and morphological divergence within B. ephippiatus across its geographic range and present evidence that B. ephippiatus comprises multiple independent evolutionary lineages. The pattern of their diversification corresponds to geographic and environmental isolating mechanisms, including the Mexican highlands, the lowlands of the Isthmus of Tehuantepec in southern Mexico, the Nicaraguan Depression, the patchily distributed volcanic ranges in Nuclear Central America and Pleistocene glacial cycles. These results have important implications for the development and distribution of B. ephippiatus as a commercial pollinator in Mexico and Central America.

Keywords

Bumble bees Microsatellites Cytochrome oxidase I STRUCTURE GENELAND Species delimitation 

Supplementary material

10592_2016_903_MOESM1_ESM.docx (81.7 mb)
Supplementary material 1 (DOCX 83630 kb)

References

  1. Anducho-Reyes MA, Cognato AI, Hayes JL, Zúñiga G (2008) Phylogeography of the bark beetle Dendroctonus mexicanus Hopkins (Coleoptera: Curculionidae: Scolytinae). Mol Phylogenet Evol 49:930–940PubMedCrossRefGoogle Scholar
  2. Arbetman MP, Meeus I, Morales CL, Aizen MA, Smagghe G (2013) Alien parasite hitchhikes to Patagonia on invasive bumblebee. Biol Invasions 15:489–494CrossRefGoogle Scholar
  3. Aytekin MA, Terzo M, Rasmont P, Çağatay N (2007) Landmark based geometric morphometric analysis of wing shape in Sibiricobombus Vogt (Hymenoptera: Apidae: Bombus Latreille). Annales de la Société entomologique de France (N.S.) 43:95–102CrossRefGoogle Scholar
  4. Barber BR, Klicka J (2010) Two pulses of diversification across the Isthmus of Tehuantepec in a montane Mexican bird fauna. Proc R Soc Lond B 277:2675–2681CrossRefGoogle Scholar
  5. Baselga A, Recuero E, Parra-Olea G, García-París M (2011) Phylogenetic patterns in zopherine beetles are related to ecological niche width and dispersal limitation. Mol Ecol 20:5060–5073PubMedCrossRefGoogle Scholar
  6. Bickford D, Lohman DJ, Sodhi NS, Ng PKL, Meier R, Winker K, Ingram KK, Das I (2007) Cryptic species as a window on diversity and conservation. Trends Ecol Evol 22:148–155PubMedCrossRefGoogle Scholar
  7. Bossert S, Gereben-Krenn BA, Neumayer J, Schneller B, Krenn HE (2016) The cryptic Bombus lucorum complex (Hymenoptera: Apidae) in Austria: phylogeny, distribution, habitat usage and a climatic characterization based on COI sequence data. Zool Stud 55:1–15Google Scholar
  8. Bourret V, O’Reilly PT, Carr JW, Berg PR, Bernatchez L (2011) Temporal change in genetic integrity suggests loss of local adaptation in a wild Atlantic salmon (Salmo salar) population following introgression by farmed escapees. Heredity 106:500–510PubMedPubMedCentralCrossRefGoogle Scholar
  9. Cameron SA, Williams PH (2003) Phylogeny of bumble bee in the New World subgenus Fervidobombus (Hymenoptera: Apidae): congruence of molecular and morphological data. Mol Phylogenet Evol 34:321–331Google Scholar
  10. Cameron SA, Hines HM, Williams PH (2007) A comprehensive phylogeny of the bumble bees (Bombus). Biol J Linn Soc 91:161–188CrossRefGoogle Scholar
  11. Cameron SA, Lozier JD, Strange JP, Koch JB, Cordes N, Solter LF, Griswold TL (2011) Patterns of widespread decline in North American bumble bees. Proc Natl Acad Sci 108:662–667PubMedPubMedCentralCrossRefGoogle Scholar
  12. Carolan JC, Murray TE, Fitzpatrick Ú, Crossley J, Schmidt H, Cederberg B, McNally L, Paxton RJ, Williams PH, Brown MJF, Steinke D (2012) Colour patterns do not diagnose species: quantitative evaluation of a DNA barcoded cryptic bumblebee complex. PLoS ONE 7(1):e29251PubMedPubMedCentralCrossRefGoogle Scholar
  13. Castoe TA, Daza JM, Smith EN, Sasa MM, Kuch U, Campbell JA, Chippindale PT, Parkinson CL (2009) Comparative phylogeography of pitvipers suggests a consensus of ancient Middle American highland biogeography. J Biogeogr 36:88–103CrossRefGoogle Scholar
  14. Chapman RE, Wang J, Bourke AFG (2003) Genetic analysis of spatial foraging patterns and resource sharing in bumble bee pollinators. Mol Ecol 12:2801–2808PubMedCrossRefGoogle Scholar
  15. Charman TG, Sears J, Green RE, Bourke AFG (2010) Conservation genetics, foraging distance and nest density of the scarce Great Yellow Bumblebee (Bombus distinguendus). Mol Ecol 19:2661–2674PubMedCrossRefGoogle Scholar
  16. Clement M, Posada D, Crandall K (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 10:1657–1660CrossRefGoogle Scholar
  17. Cracraft J, Prum RO (1988) Patterns and processes of diversification: speciation and historical congruence in some Neotropical birds. Evolution 42:603–620CrossRefGoogle Scholar
  18. Crawford A, Smith E (2005) Cenozoic biogeography and evolution in direct-developing frogs of Central America (Leptodactylidae: Eleutherodactylus) as inferred from a phylogenetic analysis of nuclear and mitochondrial genes. Mol Phylogenet Evol 35:536–555PubMedCrossRefGoogle Scholar
  19. Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9:772PubMedPubMedCentralCrossRefGoogle Scholar
  20. Darvill B, Ellis JS, Lye GC, Goulson D (2006) Population structure and inbreeding in a rare and declining bumblebee, Bombus muscorum (Hymenoptera: Apidae). Mol Ecol 15:601–611PubMedCrossRefGoogle Scholar
  21. Darvill B, O’Connor S, Lye GC, Waters J, Lepais O, Goulson D (2010) Cryptic differences in dispersal lead to differential sensitivity to habitat fragmentation in two bumblebee species. Mol Ecol 19:53–63PubMedCrossRefGoogle Scholar
  22. Daza JM, Castoe TA, Parkinson CL (2010) Using regional comparative phylogeographic data from snake lineage to infer historical processes in Middle America. Ecography 33:343–354Google Scholar
  23. Dockx C (2007) Directional and stabilizing selection on wing size and shape in migrant and resident monarch butterflies, Danaus plexippus (L.), in Cuba. Biol J Linn Soc 92:605–616CrossRefGoogle Scholar
  24. Dorn PL, Calderon C, Melgar S, Moguel B, Solorzano E, Dumonteil E, Rodas A, de la Rua N, Garnica R, Monroy C (2009) Two distinct Triatoma dimidiata (Latreille, 1811) taxa are found in sympatry in Guatemala and Mexico. PLoS Neglect Trop Dis 3:e393CrossRefGoogle Scholar
  25. Dreier S, Redhead JW, Warren IA, Bourke AFG, Heard MS, Jordan WC, Sumner S, Wang J, Carvell C (2014) Fine-scle spatial genetic structure of common and declining bumble bees across an agricultural landspace. Mol Ecol 23:3384–3395PubMedPubMedCentralCrossRefGoogle Scholar
  26. Drummond AJ, Suchard MA, Xie D, Rambaut A (2012) Bayesian phylogenetics with BEAUti and BEAST 1.7. Mol Biol Evol 29:1969–1973PubMedPubMedCentralCrossRefGoogle Scholar
  27. Duennes MA, Vandame R. 2015. Bombus ephippiatus. The IUCN Red List of Threatened Species. e.T21215149A21215217. doi:10.2305/IUCN.UK.2015-4.RLTS.T21215149A21215217.en. Downloaded on 29 March 2016
  28. Duennes MA, Lozier JD, Hines HM, Cameron SA (2012) Geographical patterns of genetic divergence in the widespread Mesoamerican bumble bee Bombus ephippiatus (Hymenoptera: Apidae). Mol Phylogenet Evol 64:219–231PubMedCrossRefGoogle Scholar
  29. Earl DA, vonHoldt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361CrossRefGoogle Scholar
  30. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucl Acids Res 32:1792–1797PubMedPubMedCentralCrossRefGoogle Scholar
  31. Ellis JS, Knight ME, Goulson D (2005) Delineating species for conservation using mitochondrial sequence data: the taxonomic status of two problematic Bombus species (Hymenoptera: Apidae). J Insect Conserv 9:75–83CrossRefGoogle Scholar
  32. Ellis JS, Knight ME, Darvill B, Goulson D (2006) Extremely low effective population sizes, genetic structuring and reduced genetic diversity in a threatened bumblebee species, Bombus sylvarum (Hymenoptera: Apidae). Mol Ecol 15:4375–4386PubMedCrossRefGoogle Scholar
  33. Escalante P, Navarro-Sigüenza AG, Peterson AT (1993) A geographic, ecological and historical analysis of land bird diversity in Mexico. In: Ramamoorthy TP, Bye R, Lot A, Fa J (eds) Biological diversity in Mexico: origins and distributions. Oxford University Press, New York, pp 281–307Google Scholar
  34. Estoup A, Scholl A, Pouvreau A, Solignac M (1995) Monoandry and polyandry in bumble bees (Hymenoptera: Bombinae) as evidenced by highly variable microsatellites. Mol Ecol 4:89–93PubMedCrossRefGoogle Scholar
  35. Estoup A, Solignac M, Cornuet JM, Goudet J, Scholl A (1996) Genetic differentiation of continental and island populations of Bombus terrestris (Hymenoptera: Apidae) in Europe. Mol Ecol 5:19–31PubMedCrossRefGoogle Scholar
  36. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620PubMedCrossRefGoogle Scholar
  37. Francisco FO, Santiago LR, Mizusawa YM, Oldroyd BP, Arias MC (2016) Genetic structure of island and mainland populations of a Neotropical bumble bee species. J Insect Conserv 20:383–394CrossRefGoogle Scholar
  38. Françoso E, de Oliveira FF, Arias MC (2016) An integrative approach identifies a new species of bumblebee (Hymenoptera: Apidae: Bombini) from northeastern Brazil. Apidologie 47:171–185CrossRefGoogle Scholar
  39. Funk WC, Caminer M, Ron SR (2012) High levels of cryptic species diversity uncovered in Amazonian frogs. Proc R Soc B 279:1806–1814PubMedCrossRefGoogle Scholar
  40. Gallot-Lavallée M, Schmid-Hempel R, Vandame R, Vergara CH, Schmid-Hempel P (2016) Large scale patterns of abundance and distribution of parasites in Mexican bumblebees. J Invertebr Pathol 133:73–82PubMedCrossRefGoogle Scholar
  41. García-Moreno J, Navarro-Sigüenza AG, Peterson AT, Sánchez-González LA (2004) Genetic variation coincides with geographic structure in the common bush-tanager (Chlorospingus ophthalmicus) complex from Mexico. Mol Phylogenet Evol 33:186–196PubMedCrossRefGoogle Scholar
  42. García-Moreno J, Cortés N, García-Deras G, Hernández-Baños B (2006) Local origin and diversification among Lampornis hummingbirds: a Mesoamerican taxon. Mol Phylogenet Evol 38:488–498PubMedCrossRefGoogle Scholar
  43. Goulson D (2010) Impacts of non-native bumblebees in Western Europe and North America. Appl Entomol Zool 45:7–12CrossRefGoogle Scholar
  44. Goulson D, Kaden JC, Lepais O, Lye GC (2011) Population structure, dispersal and colonization history of the garden bumblebee Bombus hortorum in the Western Isles of Scotland. Conserv Genet 12:867–879CrossRefGoogle Scholar
  45. Guillot G, Renaud S, Ledevin R, Michaux J, Claude J (2012) A unifying model for the analysis of phenotypic, genetic and geographic data. Syst Biol 61:897–911PubMedCrossRefGoogle Scholar
  46. Gutiérrez-García T, Vázquez-Domínguez E (2012) Biogeographically dynamic genetic structure bridging two continents in the monotypic Central American rodent, Ototylomys phyllotis. Biol J Linn Soc 107:593–610CrossRefGoogle Scholar
  47. Gutiérrez-García T, Vázquez-Domínguez E (2013) Consensus between genes and stones in the biogeographic and evolutionary history of Central America. Quatern Res 79:311–324CrossRefGoogle Scholar
  48. Halffter G (1987) Biogeography of the montane entomofauna of Mexico and Central America. Annu Rev Entomol 32:95–114CrossRefGoogle Scholar
  49. Heilprin A (1887) The geographical and geological distribution of animals. Kegan Paul, Trench and Co, LondonCrossRefGoogle Scholar
  50. Hines HM, Williams PH (2012) Mimetic colour pattern evolution in the highly polymorphic Bombus trifasciatus (Hymenoptera: Apidae) species complex and its comimics. Zool J Linn Soc 166:805–826CrossRefGoogle Scholar
  51. Hines HM, Cameron SA, Williams PH (2006) Molecular phylogeny of the bumble bee subgenus Pyrobombus (Hymenoptera: Apidae: Bombus) with insights into gene utility for lower-level analysis. Invertebr System 20:289–303CrossRefGoogle Scholar
  52. Huang J, Wu J, An J, Williams PH (2015) Newly discovered colour-pattern polymorphism of Bombus koreanus females (Hymenoptera: Apidae) demonstrated by DNA barcoding. Apidologie 46:250–261CrossRefGoogle Scholar
  53. Jha S (2015) Contemporary human-altered landscapes and oceanic barriers reduce bumble bee gene flow. Mol Ecol 24:993–1006PubMedCrossRefGoogle Scholar
  54. Jha S, Kremen C (2013) Urban land use limits regional bumble bee gene flow. Mol Ecol 22:2483–2495PubMedCrossRefGoogle Scholar
  55. Kalinowski ST (2011) The computer program STRUCTURE does not reliably identify the main genetic clusters within species: simulations and implications for human population structure. Heredity 106:625–632PubMedCrossRefGoogle Scholar
  56. Kawakita A, Sota T, Ito M, Ascher JS, Tanaka H, Kato M, Roubik DW (2004) Phylogeny, historical biogeography, and character evolution in bumble bees (Bombus: Apidae) based on simultaneous analysis of three nuclear gene sequences. Mol Phylogenet Evol 31:799–804PubMedCrossRefGoogle Scholar
  57. Kerhoulas NJ, Arbogast BS (2010) Molecular systematics and Pleistocene biogeography of Mesoamerican flying squirrels. J Mammal 91:654–667CrossRefGoogle Scholar
  58. Klingenberg CP (2011) MorphoJ: an integrated software package for geometric morphometrics. Mol Ecol Resour 11:353–357PubMedCrossRefGoogle Scholar
  59. Kondo NI, Yamanaka D, Kanbe Y, Kunitake YK, Yoneda M, Tsuchida K, Goka K (2009) Reproductive disturbance of Japanese bumblebees by the introduced European bumblebee Bombus terrestris. Naturwissenschaften 96:467–475PubMedCrossRefGoogle Scholar
  60. Koulianos S, Schmid-Hempel P (2000) Phylogenetic relationships among bumble bees (Bombus, Latreille) inferred from mitochondrial cytochrome b and cytochrome oxidase I sequences. Mol Phylogenet Evol 14:335–341PubMedCrossRefGoogle Scholar
  61. Kraus FB, Wolf S, Moritz RFA (2009) Male flight distance and population substructure in the bumblebee Bombus terrestris. J Anim Ecol 78:247–252PubMedCrossRefGoogle Scholar
  62. Kraus FB, Szentgyörgyi H, Rożej E, Rhode M, Moroń D, Woyciechowski M, Moritz RFA (2011) Greenhouse bumblebees (Bombus terrestris) spread their genes into the wild. Conserv Genet 12:187–192CrossRefGoogle Scholar
  63. Labougle JM (1990) Bombus of México and Central America (Hymenoptera, Apidae). Univ Kansas Sci Bull 54:35–73Google Scholar
  64. Labougle JM, Ito M, Okazawa T (1985) The species of the genus Bombus (Hymenoptera: Apidae) of Chiapas, Mexico and Guatemala; with a morphometric and altitudinal analysis. Folia Entomólgica Mexicana 64:55–72Google Scholar
  65. Lecocq T, Lhomme P, Michez D, Dellicour S, Valterová Rasmont P (2011) Molecular and chemical characters to evaluate species status of two cuckoo bumblebees: Bombus barbutellus and Bombus maxillosus (Hymenoptera, Apidae, Bombini). Syst Entomol 36:453–469CrossRefGoogle Scholar
  66. Lecocq T, Dellicour S, Michez D, Lhomme P, Vanderplanck M, Valterová I, Rasplus J, Rasmont P (2013) Scent of a break-up: phylogeography and reproductive trait divergences in the red-tailed bumblebee (Bombus lapidarius). BMC Evol Biol 13:263PubMedPubMedCentralCrossRefGoogle Scholar
  67. Lecocq T, Brasero N, Martinet B, Valterová I, Rasmont P (2015a) Highly polytypic taxon complex: interspecific and intraspecific integrative taxonomic assessment of the widespread pollinator Bombus pascuorum Scopoli 1763 (Hymenoptera: Apidae). Syst Entomol 40:881–890CrossRefGoogle Scholar
  68. Lecocq T, Dellicour S, Michez D, Dehon M, Dewulf A, De Meulemeester T, Brasero N, Valterová I, Rasplus J, Rasmont P (2015b) Methods for species delimitation in bumblebees (Hymenoptera, Apidae, Bombus): towards an integrative approach. Zool Scripta 44:281–297CrossRefGoogle Scholar
  69. Lecocq T, Brasero N, De Meulemeester T, Michez D, Dellicour S, Lhomme P, de Jonghe R, Valterová I, Urbanová K, Rasmont P (2015c) An integrative taxonomic approach to assess the status of Corsican bumblebees: implications for conservation. Anim Conserv 18:236–248CrossRefGoogle Scholar
  70. Lecocq T, Coppée A, Michez D, Brasero N, Rasplus J, Valterová I, Rasmont P (2016) The alien’s identity: consequences of taxonomic status for the international bumblebee trade regulations. Biol Conserv 195:169–176CrossRefGoogle Scholar
  71. León-Paniagua L, Navarro-Sigüenza AG, Hernández-Baños BE, Morales JC (2007) Diversification of the arboreal mice of the genus Habromys (Rodentia: Cricetidae: Neotominae) in the Mesoamerican highlands. Mol Phylogenet Evol 42:653–664PubMedCrossRefGoogle Scholar
  72. Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452PubMedCrossRefGoogle Scholar
  73. Liebherr JK (1994) Biogeographic patterns of montane Mexican and Central American carabidae (Coleoptera). Can Entomol 126:841–860CrossRefGoogle Scholar
  74. Lobo JM, Halffter G (2000) Biogeographical and ecological factors affecting the altitudinal variation of mountainous communities of coprophagous beetles (Coleoptera: Scarabaeoidea): a comparative study. Ann Entomol Soc Am 93:115–126CrossRefGoogle Scholar
  75. Lozier JD, Cameron SA (2009) Comparative genetic analyses of historical and contemporary collections highlight contrasting demographic histories for the bumble bee Bombus pensylvanicus and B. impatiens in Illinois. Mol Ecol 18:1875–1886PubMedCrossRefGoogle Scholar
  76. Lozier JD, Strange JP, Steward IJ, Cameron SA (2011) Patterns of range-wide genetic variation in six North American bumble bee (Apidae: Bombus) species. Mol Ecol 20:4870–4888PubMedCrossRefGoogle Scholar
  77. Lozier JD, Strange JP, Koch JB (2013) Landscape heterogeneity predicts gene flow in a widespread polymorphic bumble bee, Bombus bifarius (Hymenoptera: Apidae). Conserv Genet 14:1099–1110CrossRefGoogle Scholar
  78. Lye GC, Lepais O, Goulson D (2011) Reconstructing demographic events from population genetic data: the introduction of bumblebees to New Zealand. Mol Ecol 20:2888–2900PubMedCrossRefGoogle Scholar
  79. Maebe K, Meeus I, Maharramov J, Grootaert P, Michez D, Rasmont P, Smagghe G (2013) Microsatellite analysis in museum samples reveals inbreeding before the regression of Bombus veteranus. Apidologie 44:188–197CrossRefGoogle Scholar
  80. Marshall CJ, Liehberr JK (2000) Cladistic biogeography of the Mexican transition zone. J Biogeogr 27:203–216CrossRefGoogle Scholar
  81. Mastretta-Yanes A, Moreno-Letelier A, Piñero D, Jorgensen TH, Emerson BC (2015) Biodiversity in the Mexican highlands and the interaction of geology, geography and climate within the Trans-Mexican Volcanic Belt. J Biogeogr 42:1586–1600CrossRefGoogle Scholar
  82. May-Itzá W, Quezada-Euán JJG, Medina Medina LA, Enríquez E, De la Rúa P (2010) Morphometric and genetic differentiation in isolated populations of the endangered Mesoamerican stingless bee Melipona yucatanica (Hymenoptera: Apoidea) suggest the existence of a two species complex. Conserv Genet 11:2079–2084CrossRefGoogle Scholar
  83. Mittermeier R, Myers N, Goettsch Mittermeier C (2000) Hotspots: earth’s biologically richest and most endangered terrestrial ecoregions. Conservation International, Washington, DCGoogle Scholar
  84. Morales CL, Arbetman M, Cameron SA, Aizen M (2013) Rapid ecological replacement of a native by invasive bumble bee species. Front Ecol Environ 11:529–534CrossRefGoogle Scholar
  85. Moreira AS, Horgan FG, Murray TE, Kakouli-Duarte T (2015) Population genetic structure of Bombus terrestris in Europe: isolation and genetic differentiation of Irish and British populations. Mol Ecol 24:3257–3268PubMedCrossRefGoogle Scholar
  86. Morrone JJ (2006) Biogeographic areas and transition zones of Latin America and the Caribbean Islands, based on panbiogeographic and cladistic analyses of the entomofauna. Annu Rev Entomol 51:467–494PubMedCrossRefGoogle Scholar
  87. Morse GE, Farrell BD (2005) Interspecific phylogeography of the Stator limbatus species complex: the geographic context of speciation and specialization. Mol Phylogenet Evol 36:201–213PubMedCrossRefGoogle Scholar
  88. Mulcahy DG, Morrill BH, Mendelson JR (2006) Historical biogeography of lowland species of toads (Bufo) across the Trans-Mexican Neovolcanic Belt and the Isthmus of Tehuantepec. J Biogeogr 33:1889–1904CrossRefGoogle Scholar
  89. Mutanen M, Pretorius E (2007) Subjective visual evaluation vs. traditional and geometric morphometrics in species delimitation: a comparison of moth genitalia. Syst Entomol 32:371–386CrossRefGoogle Scholar
  90. Niemiller ML, Near TJ, Fitzpatrick BM (2012) Delimiting species using multilocus data: diagnosing cryptic diversity in the southern cavefish Typhlichthys subterraneus (Teleostei: Amblyopsidae). Evolution 66:846–866PubMedCrossRefGoogle Scholar
  91. Niemiller ML, Graening GO, Fenolio DB, Godwin JC, Cooley JR, Pearson WD, Fitzpatrick BM, Near TJ (2013) Doomed before they are described? The need for conservation assessments of cryptic species complexes using an amblyopsid cavefish (Amblyopsidae: Typhlichthys) as a case study. Biodivers Conserv 22:1799–1820CrossRefGoogle Scholar
  92. Olson DM, Dinerstein E, Wikramanayake ED, Burgess ND, Powell GVN, Underwood EC, D’amico JA, Itoua I, Strand HE, Morrison JC, Loucks CJ, Allnutt TF, Ricketts TH, Kura Y, Lamoreux JF, Wettengel WW, Hedao P, Kassem KR (2001) Terrestrial ecoregions of the world: a new map of life on Earth. Bioscience 51:933–938CrossRefGoogle Scholar
  93. Ornelas JF, Sosa V, Soltis DE, Daza JM, González C, Soltis PS, Gutiérrez-Rodríguez C, de los Monteros AE, Castoe TA, Bell C, Ruiz-Sanchez E (2013) Comparative phylogeographic analyses illustrate the complex evolutionary history of threatened cloud forests of northern Mesoamerica. PLoS ONE. doi:10.1371/journal.pone.0056283 Google Scholar
  94. Pérez S, Vázquez-Domínguez E (2015) Mitochondrial diversification of the Peromyscus mexicanus species group in Nuclear Central America: biogeographic and taxonomic implications. J Zool Systematics Evol Res 53:300–311CrossRefGoogle Scholar
  95. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:949–959Google Scholar
  96. Rambaut A, Suchard MA, Xie D and Drummond AJ (2014) Tracer v1.6, Available from http://beast.bio.ed.ac.uk/Tracer
  97. Reber-Funk CR, Schmid-Hempel R, Schmid-Hempel P (2006) Microsatellite loci for Bombus spp. Mol Ecol Resour 6:83–86CrossRefGoogle Scholar
  98. Reid NM, Carstens BC (2012) Phylogenetic estimation error can decrease the accuracy of species delimitation: a Bayesian implementation of the general mixed Yule-coalescent model. BMC Evol Biol 12:196PubMedPubMedCentralCrossRefGoogle Scholar
  99. Rohlf FJ (2015) tpsDIG2: a program for digitizing landmarks and outlines from image files, scanner or video. Department of Ecology and Evolution, State University of New York at Stony Brook. Available at https://life.bio.sunysb.edu/morph/
  100. Rohlf FJ (2015) tpsUtil: a tps file utility program. Department of Ecology and Evolution, State University of New York at Stony Brook. Available at https://life.bio.sunysb.edu/morph/
  101. Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542PubMedPubMedCentralCrossRefGoogle Scholar
  102. Rousset F (2008) GENEPOP’007: a complete re-implementation of the GENEPOP software for Windows and Linux. Molecular Ecology Resources 8:103–106PubMedCrossRefGoogle Scholar
  103. Roy MS, da Silva JMC, Arctander P, García-Moreno J, Fjeldså J (1997) The speciation of South American and African birds in montane regions. In: Mindell D (ed) Avian molecular evolution and systematics. Academic Press, San Diego, pp 325–343CrossRefGoogle Scholar
  104. Ruiz EA, Rinehart JE, Hayes JL, Zuñiga G (2010) Historical demography and phylogeography of a specialist bark beetle, Dendroctonus pseudotsugae Hopkins (Curculionidae: Scolytinae). Environ Entomol 39:1685–1697PubMedCrossRefGoogle Scholar
  105. Sachman-Ruiz B, Narváez-Padilla V, Reynaud E (2015) Commercial Bombus impatiens as reservoirs of emerging infectious diseases in central México. Biol Invasions 17:2043–2053CrossRefGoogle Scholar
  106. Sánchez-Sánchez H, López-Barrera G, Peñaloza-Ramírez JM, Rocha-Ramírez V, Oyama K (2012) Phylogeography reveals routes of colonization of the bark beetle Dendroctonus approximatus Dietz in Mexico. J Hered 103:638–650PubMedCrossRefGoogle Scholar
  107. Santos Júnior JE, Santos FR, Silveira FA (2015) Hitting an unintended target: phylogeography of Bombus brasiliensis Lepeletier, 1836 and the first new Brazilian bumblebee species in a century (Hymenoptera: Apidae). PLoS ONE 10:e0125847PubMedPubMedCentralCrossRefGoogle Scholar
  108. Schlick-Steiner BC, Steiner FM, Seifer B, Stauffer C, Christian E, Crozier RH (2010) Integrative taxonomy: a multisource approach to exploring biodiversity. Ann Rev Entomol 55:421–438CrossRefGoogle Scholar
  109. Schmid-Hempel P, Schmid-Hempel R, Brunner PC, Seeman OD, Allen GR (2007) Invasion success of the bumblebee, Bombus terrestris, despite a drastic genetic bottleneck. Heredity 99:414–422PubMedCrossRefGoogle Scholar
  110. Shao ZY, Mao HX, Fu WJ, Ono M, Wang DS, Bonizzoni M, Zhang YP (2004) Genetic structure of Asian populations of Bombus ignitus (Hymenoptera: Apidae). J Hered 95:46–52PubMedCrossRefGoogle Scholar
  111. Sheffield CS, Richardson L, Cannings S, Ngo H, Heron J, Williams PH (2016) Biogeography and designatable units of Bombus occidentalis Greene and B. terricola Kirby (Hymenoptera: Apidae) with implications for conservation status assessments. J Insect Conserv 20:189–199CrossRefGoogle Scholar
  112. Stolle E, Rohde M, Vautrin D, Solignac M, Schmid-Hempel P, Schmid-Hempel R, Moritz RFA (2009) Novel microsatellite DNA loci for Bombus terrestris. Mol Ecol Resour 9:1345–1352PubMedCrossRefGoogle Scholar
  113. Strecker U, Faúndez V, Wilkens H (2004) Phylogeography of surface and cave Astyanax (Telostei) from Central and North America based on cytochrome b sequence data. Mol Phylogenet Evol 33:469–481PubMedCrossRefGoogle Scholar
  114. Suárez-Atilano M, Burbrink F, Vázquez-Domínguez E (2014) Phylogeographic structure of Boa constrictor imperator with emphasis of diversification across the lowlands and mountains of Central America and Mexico. J Biogeogr 41:2371–2384CrossRefGoogle Scholar
  115. Sullivan J, Arellano E, Rogers DS (2000) Comparative phylogeography of Mesoamerican highland rodents: concerted versus independent response to past climate fluctuations. American Naturalist 155:755–768PubMedCrossRefGoogle Scholar
  116. Talavera G, Dincã V, Vila R (2013) Factors affecting species delimitations with the GMYC model: insights from a butterfly survey. Methods Ecol Evol 4:1101–1110CrossRefGoogle Scholar
  117. Torres-Ruiz A, Jones RW (2012) Comparison of the efficiency of the bumble bees Bombus impatiens and Bombus ephippiatus (Hymenoptera: Apidae) as pollinators of tomato in greenhouses. J Econ Entomol 105:1871–1877PubMedCrossRefGoogle Scholar
  118. Vrba E (1993) Mammal evolution in the African Neogene and a new look at the Great American Interchange. In: Goldblatt P (ed) Biological relationships between Africa and South America. Yale University Press, New Haven, pp 393–434Google Scholar
  119. Widmer A, Schmid-Hempel P (1999) The population genetic structure of a large temperate pollinator species, Bombus pascuorum (Scopoli) (Hymenoptera: Apidae). Mol Ecol 8:387–398PubMedCrossRefGoogle Scholar
  120. Widmer A, Schmid-Hempel P, Estoup A, Scholl A (1998) Population genetic structure and colonization history of Bombus terrestris s.l. (Hymenoptera: Apidae) from the Canary Islands and Madeira. Heredity 81(5):563–572CrossRefGoogle Scholar
  121. Williams PH (1998) An annotated checklist of bumble bees with an analysis of patterns of description (Hymenoptera: Apidae, Bombini). Bull Nat History Museum Entomol Ser 67:79–152Google Scholar
  122. Williams PH, An J, Huang J (2011) The bumblebees of the subgenus Subterraneobombus: integrating evidence from morphology and DNA barcodes (Hymenoptera, Apidae, Bombus). Zool J Linn Soc 163:813–862CrossRefGoogle Scholar
  123. Williams PH, An J, Brown MJF, Carolan JC, Goulson D, Huang J, Ito M (2012) Cryptic bumblebee species: consequences for conservation and the trade in greenhouse pollinators. PLoS ONE 7:32992CrossRefGoogle Scholar
  124. Williams PH, Byvaltsev AM, Cederberg B, Berezin MV, Ødegaard F, Rasmussen C, Richardson LL, Huang J, Sheffield CS, Williams ST (2015) Genes Suggest Ancestral Colour polymorphisms are shared across morphologically cryptic species in Arctic bumblebees. PLoS ONE 10:e0144544PubMedPubMedCentralCrossRefGoogle Scholar
  125. Yoon HJ, Kim SY, Lee KY, Lee SB, Park IG, Kim I (2009) Interspecific hybridization of the bumblebees Bombus ignitus and B. terrestris. Int J Ind Entomol 18:45–52Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Michelle A. Duennes
    • 1
    • 4
  • Chris Petranek
    • 1
    • 5
  • Esteban Pineda Diez de Bonilla
    • 2
    • 6
  • Jorge Mérida-Rivas
    • 2
  • Oscar Martinez-López
    • 2
    • 3
  • Philippe Sagot
    • 2
  • Rémy Vandame
    • 2
  • Sydney A. Cameron
    • 1
  1. 1.Department of Entomology, School of Integrative BiologyUniversity of IllinoisUrbanaUSA
  2. 2.Departamento Agricultura, Sociedad y AmbienteEl Colegio de la Frontera SurSan Cristóbal De Las CasasMexico
  3. 3.Unidad para la Conservación, Uso y Valoración de la Biodiversidad, Centro de Estudios Conservacionistas, Facultad de Ciencias Químicas y FarmaciaUniversidad de San Carlos de GuatemalaCuidad De GuatemalaGuatemala
  4. 4.Department of Entomology, College of Natural and Agricultural SciencesUniversity of California, RiversideRiversideUSA
  5. 5.Department of Zoology & PhysiologyUniversity of WyomingLaramieUSA
  6. 6.Instituto de Ciencias BiológicasUniversidad de Ciencias y Artes de ChiapasTuxtla GutiérrezMexico

Personalised recommendations