Conservation Genetics

, Volume 18, Issue 2, pp 287–296 | Cite as

Hybridisation between turtle subspecies: a case study with the European pond turtle (Emys orbicularis)

  • Matthieu Raemy
  • Uwe Fritz
  • Marc Cheylan
  • Sylvain Ursenbacher
Research Article


Genetic introgression has recently become an important concern for conservation genetics as it can occur between rare and related common species, between various genetic groups and between individuals from different origins. Our aims were: (i) to determine whether hybridisation or introgression occurs between Emys orbicularis subspecies in a natural contact zone in France; (ii) to determine the geographic extent of the contact zone between distinct subspecies in France; (iii) to evaluate at which level introgression occurs, and finally; (iv) to evaluate whether combining mitochondrial and nuclear genetic markers reflects the same contact zone as when only one genetic marker is used. Introgression was evaluated by genotyping biparentally inherited microsatellites and sequencing the maternally inherited cytochrome b gene of French populations. We demonstrated strong introgression between subspecies under natural conditions in the old contact zone in southern and eastern France. Our results corroborated that introgression reflects past natural events, but also demonstrated that human impact has altered these patterns. We finally confirmed that the combination of mitochondrial and nuclear genetic markers is more appropriate to reveal introgression than the use of only one genetic marker.


Conservation genetics France Hybridisation Introgression 



We would like to thank all people who provided samples from French populations: Mathieu Détaint (Conservatoire Régional d’Espaces Naturels Aquitaine), Céline Faure and Benjamin Vollot (natural reserve of Pont-de-Gau), Nadège Gauter (Conservatoire Régional d’Espaces Naturels Aquitaine), Anthony Olivier (natural reserve of Tour-du-Valat), Zoey Owen-Jones (natural reserve of Chérine), Vincent Rivière (Agirécologique) and Timothée Schwartz (A Rocha France). We would also like to thank the French Ministry of Ecology for the capture permits and two reviewers for constructive comments.

Supplementary material

10592_2016_901_MOESM1_ESM.doc (1.1 mb)
Supplementary material 1 (DOC 1175 kb)


  1. Beerli P, Palczewski M (2010) Unified framework to evaluate panmixia and migration direction among multiple sampling locations. Genetics 185:313–326CrossRefPubMedPubMedCentralGoogle Scholar
  2. Boulenger GA (1889) Catalogue of the Chelonians, Rynchocephalians and Crocodiles in the British Museum (Natural History). British Museum, LondonGoogle Scholar
  3. Bringsøe H, Buskirk JR, Willemsen RE (2001) Testudo marginata Schoepff, 1792 – Breitrandschildkröte. In: Fritz U (ed) Handbuch der Reptilien und Amphibien Europas Schildkröten, 1st edn. Aula, Wiebelsheim, pp 291–334Google Scholar
  4. Canessa S, Genta P, Jesu R, Lamagni L, Oneto F, Salvidio S, Ottonello D (2016) Challenges of monitoring reintroduction outcomes: insights from the conservation breeding program of an endangered turtle in Italy. Biol Conserv. doi: 10.1016/j.biocon.2016.05.003
  5. Cheylan M (1998) Evolution of the distribution of the European pond turtle in the French Mediterranean area since the post-glacial. Mertensiella 10:47–65Google Scholar
  6. Cornuet JM, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144:2001–2014PubMedPubMedCentralGoogle Scholar
  7. Dahms P (1912) Über das Vorkommen der Sumpfschildkröte in Westpreußen (3. Mitteilung). Ber Westpreuß Bot-Zool Ver 35:131–144Google Scholar
  8. Ernst CH, Barbour RW (1989) Turtles of the world. Smithsonian Institution, Washington DCGoogle Scholar
  9. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620CrossRefPubMedGoogle Scholar
  10. Ferri V, di Cerbo AR (2000) La Trachemys scripta elegans (Wied, 1839) negli ambienti umidi lombardi: inquinamento faunistico o problema ecologico? In: Giacoma K (ed) Atti del I Congresso Nazionale SHI, 1996. SHI, Torino, pp 803–808Google Scholar
  11. Ficheux S (2013) Dynamique et génétique des populations de cistude d’Europe Emys orbicularis. Unpublished Thesis, University of BourgogneGoogle Scholar
  12. Frankham R, Ballou JD, Briscoe DA (2002) Introduction to Conservation Genetics. Cambridge University, CambridgeCrossRefGoogle Scholar
  13. Fritz U (2001) Emys orbicularis (Linnaeus, 1758) Europäische Sumpfschildkröte. In: Fritz U (ed) Handbuch der Reptilien und Amphibien Europas. Schildkröten, vol 1. Aula, Wiebelsheim, pp 343–515Google Scholar
  14. Fritz U, Guicking D, Lenk P, Joger U, Wink M (2004) When turtle distribution tells European history: mtDNA haplotypes of Emys orbicularis reflect in Germany former division by the iron curtain. Biologia 59(14):19–25Google Scholar
  15. Fritz U, Cadi A, Cheylan M, Coïc C, Détaint M, Olivier A, Rosecchi E, Guicking D, Lenk P, Joger U, Wink M (2005a) Distribution of mtDNA haplotypes (cyt b) of Emys orbicularis in France and implications for post-glacial recolonization. Amphib Reptil 26:231–238CrossRefGoogle Scholar
  16. Fritz U, Fattizzo T, Guicking D, Tripepi S, Pennisi MG, Lenk P, Joger U, Wink M (2005b) A new cryptic species of pond turtle from southern Italy, the hottest spot in the range of the genus Emys (Reptilia, Testudines, Emydidae). Zool Scr 34:351–371CrossRefGoogle Scholar
  17. Fritz U, Guicking D, Kami H, Arakelyan M, Auer M, Ayaz D, Ayres Fernández C, Bakiev AG, Celani A, Dzukic G, Fahd S, Havas P, Joger U, Khabibullin VF, Mazanaeva LF, Siroky P, Tripepi S, Valdeòn Vélez A, Velo-Antón G, Wink M (2007) Mitochondrial phylogeography of European pond turtles (Emys orbicularis, Emys trinacris)—an update. Amphib Reptil 28:418–426CrossRefGoogle Scholar
  18. Fritz U, Ayaz D, Hundsdörfer AK, Kotenko T, Guicking D, Wink M, Tok CV, Cicek K, Buschbom J (2009) Mitochondrial diversity of European pond turtles (Emys orbicularis) in Anatolia and the Ponto-Caspian region: multiple old refuges, hotspot of extant diversification and critically endangered endemics. Org Divers Evol 9:100–114CrossRefGoogle Scholar
  19. Fritz U, Chiari Y (2013) Conservation actions for European pond turtles—a summary of current efforts in distinct European countries. Herpetol Note 6:105Google Scholar
  20. Gottelli D, Sillero-Zubiri C, Appelbaum GD, Roy MS, Girman DJ, Garcia-Moreno J, Ostrander EA, Wayne RK (1994) Molecular genetics of the most endangered canid: the Ethiopian wolf Canis simensis. Mol Ecol 3:301–312CrossRefPubMedGoogle Scholar
  21. Goudet J (1995) FSTAT (version 1.2): a computer program to calculate F-statistics. J Hered 86:485–486CrossRefGoogle Scholar
  22. Hewitt GM (1996) Some genetic consequences of ice ages, and their role in divergence and speciation. Biol J Linn Soc 58:247–276CrossRefGoogle Scholar
  23. Hewitt GM (1999) Post-glacial recolonization of European biota. Biol J Linn Soc 68:87–112CrossRefGoogle Scholar
  24. Hobbs RJ, Higgs E, Harris JA (2009) Novel ecosystems: implications for conservation and restoration. Trend Ecol Evol 24:599–605CrossRefGoogle Scholar
  25. King TL, Julian SE (2004) Conservation of microsatellite DNA flanking sequence across 13 Emydid genera assayed with novel bog turtle (Glyptemmys muhlenbergii) loci. Conserv Genet 5:719–725CrossRefGoogle Scholar
  26. Kinzelbach R (1988) Die Europäische Sumpfschildkröte (Emys orbicularis) im Einzugsgebiet des Rheins. Angew Zool 75:385–419Google Scholar
  27. Lenk P, Wink M (1997) A RNA/RNA heteroduplex cleavage analysis to detect rare mutations in populations. Mol Ecol 6:687–690CrossRefPubMedGoogle Scholar
  28. Lenk P, Fritz U, Joger U, Wink M (1999) Mitochondrial phylogeography of the European pond turtle, Emys orbicularis, (Linnaeus, 1758). Mol Ecol 8:1911–1922CrossRefPubMedGoogle Scholar
  29. Mignet F, Gendre T, Reudet D, Cheylan M, Besnard A (2014) Reintroduction program success evaluated at very short-term: contribution of modeling the use of space in the European pond turtle. Chelonian Conserv Biol 13(1):72–80CrossRefGoogle Scholar
  30. Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in excel. Population genetic software for teaching and research—an update. Bioinformatics 28:2537–2539CrossRefPubMedPubMedCentralGoogle Scholar
  31. Pedall I, Schäfer H, Fritz U, Wink M (2009) Isolation of microsatellite markers in the Emys orbicularis complex and development of multiplex PCR amplification. Conserv Genet 10:725–727CrossRefGoogle Scholar
  32. Pedall I, Fritz U, Stuckas H, Valdéon A, Wink M (2011) Gene flow across secondary contact zones of the Emys orbicularis complex in the Western Mediterranean and evidence for extinction and re-introduction of pond turtles on Corsica and Sardinia (Testudines: Emydidae). J Zool Syst Evol Res 49:44–57CrossRefGoogle Scholar
  33. Piry S, Luikart G, Cornuet JM (1999) BOTTLENECK: a computer program for detecting recent reductions in the effective population size using allele frequency data. J Hered 90:502–503CrossRefGoogle Scholar
  34. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedPubMedCentralGoogle Scholar
  35. Randi E (2008) Detecting hybridization between wild species and their domesticated relatives. Mol Ecol 17:285–293CrossRefPubMedGoogle Scholar
  36. Rollinat R (1934) La vie des reptiles de la France centrale. Delagrave, ParisGoogle Scholar
  37. Sanz N, Araguas RM, Fernández R, Vera M, García-Marín J-L (2009) Efficiency of markers and methods for detecting hybrids and introgression in stocked populations. Conserv Genet 10:225–236CrossRefGoogle Scholar
  38. Schneeweiss N (1997) Fang, Handel und Aussetzung—historische und aktuelle Aspekte des Rückgangs der Europäischen Sumpfschildkröte (Emys orbicularis, Linnaeus, 1758), in Brandenburg. Nat Landsch Brandenbg 3:76–81Google Scholar
  39. Servan J (2000) Die “Brennein” Mittelfrankreich: Land der 1.000 Teiche und 50.000 Sumpfschildkröten Emys orbicularis (L.)Google Scholar
  40. Sommer RS, Lindquist C, Persson A, Bringsoe H, Rhodin AGJ, Schneeweiss N, Siroky P, Bachmann L, Fritz U (2009) Unexpected early extinction of the European pond turtle in Sweden and climatic impact on its Holocene range. Mol Ecol 18:1252–1262CrossRefPubMedGoogle Scholar
  41. Taberlet P, Fumagalli L, Wust-Saucy AG, Cosson JF (1998) Comparative phylogeography and postglacial colonization routes in Europe. Mol Ecol 7:453–464CrossRefPubMedGoogle Scholar
  42. Vähä JP, Primmer CR (2006) Efficiency of model-based Bayesian methods for detecting hybrid individuals under different hybridization scenarios and with different numbers of loci. Mol Ecol 15:63–72CrossRefPubMedGoogle Scholar
  43. Vamberger M, Stuckas H, Sacco F, D’Angelo S, Arculeo M, Cheylan M, Corti C, Lo Valvo M, Marrone F, Wink M, Fritz U (2015) Differences in gene flow in a twofold secondary contact zone of pond turtles in southern Italy (Testudines: Emydidae: Emys orbicularis galloitalica, E. o. hellenica, E. trinacris). Zool Scr 44:233–249CrossRefGoogle Scholar
  44. Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) Micro-checker: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Note 4:535–538. doi: 10.1111/j.1471-8286.2004.00684.x CrossRefGoogle Scholar
  45. Velo-Antón G, Wink M, Schneeweiß N, Fritz U (2011) Native or not? Tracing the origin of wild-caught and captive freshwater turtles in a threatened and widely distributed species (Emys orbicularis). Conserv Genet 12:583–588CrossRefGoogle Scholar
  46. Wright S (1921) Systems of mating. Genetics 6:111–178PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Department of Environmental Sciences, Section of Conservation BiologyUniversity of BaselBaselSwitzerland
  2. 2.Museum of Zoology (Museum für Tierkunde)Senckenberg DresdenDresdenGermany
  3. 3.Laboratoire Biogéographie et Ecologie des vertébrésCEFE UMR 5175, CNRS – EPHEMontpellierFrance

Personalised recommendations