Conservation Genetics

, Volume 18, Issue 1, pp 181–196 | Cite as

Evolutionary history and species delimitations: a case study of the hazel dormouse, Muscardinus avellanarius

  • A. Mouton
  • A. Mortelliti
  • A. Grill
  • M. Sara
  • B. Kryštufek
  • R. Juškaitis
  • A. Latinne
  • G. Amori
  • E. Randi
  • S. Büchner
  • B. Schulz
  • S. Ehlers
  • J. Lang
  • P. Adamik
  • G. Verbeylen
  • M. Dorenbosch
  • R. Trout
  • M. Elmeros
  • G. Aloise
  • S. Mazzoti
  • F. Matur
  • F. Poitevin
  • J. R. Michaux
Research Article


Robust identification of species and significant evolutionary units (ESUs) is essential to implement appropriate conservation strategies for endangered species. However, definitions of species or ESUs are numerous and sometimes controversial, which might lead to biased conclusions, with serious consequences for the management of endangered species. The hazel dormouse, an arboreal rodent of conservation concern throughout Europe is an ideal model species to investigate the relevance of species identification for conservation purposes. This species is a member of the Gliridae family, which is protected in Europe and seriously threatened in the northern part of its range. We assessed the extent of genetic subdivision in the hazel dormouse by sequencing one mitochondrial gene (cytb) and two nuclear genes (BFIBR, APOB) and genotyping 10 autosomal microsatellites. These data were analysed using a combination of phylogenetic analyses and species delimitation methods. Multilocus analyses revealed the presence of two genetically distinct lineages (approximately 11 % cytb genetic divergence, no nuclear alleles shared) for the hazel dormouse in Europe, which presumably diverged during the Late Miocene. The phylogenetic patterns suggests that Muscardinus avellanarius populations could be split into two cryptic species respectively distributed in western and central-eastern Europe and Anatolia. However, the comparison of several species definitions and methods estimated the number of species between 1 and 10. Our results revealed the difficulty in choosing and applying an appropriate criterion and markers to identify species and highlight the fact that consensus guidelines are essential for species delimitation in the future. In addition, this study contributes to a better knowledge about the evolutionary history of the species.


Muscardinus avellanarius Species delimitation Evolutionary significant unit Evolutionary history 



We thank everyone who provided tissue samples of M. avellanarius: Peter Vogel, Valdis Pilats, Luis Popa, Josef Bryja, Achim Schumacher, Helle Vilhelmsen, Nilson Goran (Goteborg Natural History Museum), Gabor Csorba (Hungarian Natural History Museum), Anita Gamauf (Wien Natural History Museum), Hans J Baagøe (Natural History Museum of Denmark). We thank Adrien Rieux, Jiajie Zhang for their kind help and advice for the phylogenetic analyses. This project was supported by the network “Bibliothèque du Vivant” funded by CNRS, the MNHN, INRA and CEA. A. Mouton is supported by a Belgian research fellowship from FRIA (Fonds pour la Formation et la Recherche dans l’Industrie et dans l’Agriculture) and a financial grant from the Belgian FNRS (crédits pour brefs séjours à l’étranger to A. Mouton) and from the University of Liège (Patrimoine) and J. R. Michaux (mandat Maitre de recherches) is supported by a Belgian research fellowship from FNRS (Fonds National pour la Recherche Scientifique) and financial grants from the Belgian FNRS (crédits aux chercheurs to J. R. Michaux). Part of this work was supported by the INTERREG-project “BioGrenzKorr” carried out by Naturstyrelsen, Stiftung Naturschutz Schleswig–Holstein and Schleswig-Holsteinische Landesforsten.

Compliance with ethical standards

Conflict of interest

The authors declare there are no conflicts of interest.

Supplementary material

10592_2016_892_MOESM1_ESM.docx (42 kb)
Supplementary material 1 (DOCX 41 kb)


  1. Aaris-Sørensen K (1998) Danmarks forhistoriske dyreverden. Gyldendal, DenmarkGoogle Scholar
  2. Agapow P-M, Bininda-Emonds OR, Crandall KA, Gittleman JL, Mace GM, Marshall JC et al (2004) The impact of species concept on biodiversity studies. Q Rev Biol 79:161–179CrossRefPubMedGoogle Scholar
  3. Allendorf FW, Luikart G (2007) Conservation and the genetics of populations. Wiley, New YorkGoogle Scholar
  4. Baker RJ, Bradley RD (2006) Speciation in mammals and the genetic species concept. J Mammal 87:643–662CrossRefPubMedPubMedCentralGoogle Scholar
  5. Ballard JWO, Whitlock MC (2004) The incomplete natural history of mitochondria. Mol Ecol 13:729–744CrossRefPubMedGoogle Scholar
  6. Belkhir K, Borsa P, Chikhi L, Raufaste N et al (1996–2004) GENETIX 4.05, Logiciel Sous Windows TM Pour la Génétique des Populations. Laboratoire Génome, Populations, Interactions, CNRS UMR 5000, Université de Montpellier II, MontpellierGoogle Scholar
  7. Bradley RD, Baker RJ (2001) A test of the genetic species concept: cytochrome-b sequences and mammals. J Mammal 82:960–973CrossRefGoogle Scholar
  8. Casanovas-Vilar I, Moyà-Solà S, Agustí J, Köhler M (2005) The geography of a faunal turnover: tracking the Vallesian Crisis. In: Elewa AMT (ed) Migration of organisms. Springer, New York, pp 247–300CrossRefGoogle Scholar
  9. Casanovas-Vilar I, García-Paredes I, Alba DM, Van Den Hoek Ostende LW, Moyà-Solà S (2010) The European Far West: miocene mammal isolation, diversity and turnover in the Iberian Peninsula. J Biogeogr 37:1079–1093CrossRefGoogle Scholar
  10. Chang SW, Oshida T, Endo H, Nguyen ST, Dang CN, Nguyen DX, Jiang X, Li ZJ, Lin LK (2011) Ancient hybridization and underestimated species diversity in Asian striped squirrels (genus Tamiops): inference from paternal, maternal and biparental markers. J Zool 285:128–138CrossRefGoogle Scholar
  11. Colangelo P, Bannikova AA, Krystufek B, Lebedev VS, Annesi F, Capanna E et al (2010) Molecular systematics and evolutionary biogeography of the genus Talpa (Soricomorpha: Talpidae). Mol Phylogenet Evol 55:372–380CrossRefPubMedGoogle Scholar
  12. Corbet GB (1978) The mammals of the Palearctic Region: a taxonomic review. British Museum (Natural History), LondonGoogle Scholar
  13. Costeur L, Legendre S, Aguilar J-P, Lécuyer C (2007a) Marine and continental synchronous climatic records: towards a revision of the European Mid-Miocene mammalian biochronological framework. Geobios 40:775–784CrossRefGoogle Scholar
  14. Costeur L, Montuire S, Legendre S, Maridet O (2007b) The Messinian event: what happened to the peri-Mediterranean mammalian communities and local climate? Geobios 40:423–431CrossRefGoogle Scholar
  15. Cracraft J (1983) Species concepts and speciation analysis. In: Johnston RF (ed) Current ornithology. Plenum Press, New York, pp 159–187CrossRefGoogle Scholar
  16. De Queiroz K (2007) Species concepts and species delimitation. Syst Biol 56:879–886CrossRefPubMedGoogle Scholar
  17. Drummond AJ, Suchard MA, Xie D, Rambaut A (2012) Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol 29:1969–1973CrossRefPubMedPubMedCentralGoogle Scholar
  18. Earl DA, vonHoldt BM (2011) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Cons Gen Res 4:359–361CrossRefGoogle Scholar
  19. Estoup A, Jarne P, Cornuet JM (2002) Homoplasy and mutation model at microsatellite loci and their consequences for population- genetics analysis. Mol Ecol 11:1591–1604CrossRefPubMedGoogle Scholar
  20. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620CrossRefPubMedGoogle Scholar
  21. Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Res 10:564–567CrossRefGoogle Scholar
  22. Fortelius M, Eronen J, Liu L, Pushkina D, Tesakov A, Vislobokova I et al (2006) Late Miocene and Pliocene large land mammals and climatic changes in Eurasia. Palaeogeogr Palaeoclimatol Palaeoecol 238:219–227CrossRefGoogle Scholar
  23. Fortelius M, Werdelin L, Andrews P, Bernor RL, Gentry A, Humphrey L, Mittmann HW, Viranta S (1996) Provinciality, diversity, turnover and paleoecology in land mammal faunas of the later Miocene of western Eurasia. In: Bernor RL, Fahlbusch V, Mittmann HV (eds) The Evolution of Western Eurasian Neogene Mammal Faunas. Columbia University Press, New York, pp 414–448Google Scholar
  24. Frankham R (2010) Challenges and opportunities of genetic approaches to biological conservation. Biol Conserv 143:1919–1927CrossRefGoogle Scholar
  25. Frankham R, Ballou JD, Dudash MR, Eldridge MDB, Fenster CB, Lacy RC et al (2012) Implications of different species concepts for conserving biodiversity. Biol Conserv 153:25–31CrossRefGoogle Scholar
  26. Fujisawa T, Barraclough TG (2013) Delimiting species using single-locus data and the Generalized Mixed Yule Coalescent approach: a revised method and evaluation on simulated data sets. Syst Biol 62:707–724CrossRefPubMedPubMedCentralGoogle Scholar
  27. Galtier N, Enard D, Radondy Y et al (2006) Mutation hot spots in mammalian mitochondrial DNA. Genome Res 16:215–222CrossRefPubMedPubMedCentralGoogle Scholar
  28. Goudet J (2001) FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.3)Google Scholar
  29. Guia APO, Saitoh T (2006) The gap between the concept and definitions in the Evolutionarily Significant Unit: the need to integrate neutral genetic variation and adaptive variation. Ecol Res 22:604–612CrossRefGoogle Scholar
  30. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acid Symp Ser 41:95–98Google Scholar
  31. Hardy O, Vekemans X (2002) SPAGeDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes 2:618–620CrossRefGoogle Scholar
  32. Hardy OJ, Charbonnel N, Fréville H, Heuertz M (2003) Microsatellite allele sizes: a simple test to assess their significance on genetic differentiation. Genetics 163:1467–1482PubMedPubMedCentralGoogle Scholar
  33. Hare MP, Palumbi SR (1999) The accuracy of heterozygous base calling from diploid sequence and resolution of haplotypes using allele-specific sequencing. Mol Ecol 8:1750–1752CrossRefPubMedGoogle Scholar
  34. Hausdorf B (2011) Progress toward a general species concept. Evolution 65:923–931CrossRefPubMedGoogle Scholar
  35. Heller R, Frandsen P, Lorenzen ED, Siegismund HR (2013) Are there really twice asmany bovid species as we thought? Syst Biol 62:490–493CrossRefPubMedGoogle Scholar
  36. Holden ME (2005) Family gliridae. In: Wilson DE, Reeder DM (eds) Mammal species of the world, 3rd edn. Smithsonian Institute Press, London, pp 819–841Google Scholar
  37. Isaac NJB, Mallet J, Mace GM (2004) Taxonomic inflation: its influence on macroecology and conservation. Trends Ecol Evol 19:464–469CrossRefPubMedGoogle Scholar
  38. Juškaitis R, Büchner S (2013) The hazel dormouse. NBB English EditionGoogle Scholar
  39. Kivanç E (1983) Die Haselmaus, Muscardinus avellanarius L., in der Türkei. Bonn zool Beitr 34:419–428Google Scholar
  40. Kopelman NM, Mayzel J, Jakobsson M, Rosenberg NA, Mayrose I (2015) Clumpak: a program for identifying clustering modes and packaging population structure inferences across K. Mol Ecol Res 15:1179–1191CrossRefGoogle Scholar
  41. Kotsakis T (2003) Fossil glirids of Italy: the state of the art Glíridos fósiles de Italia: situación actual. Coloquios Paleontol 1:335–343Google Scholar
  42. Lambeck K (1995) Late Devensian and Holocene shorelines of the British Isles and North Sea from models of glacio-hydro- isostatic rebound. J Geol Soc 152:437–448CrossRefGoogle Scholar
  43. Legendre S, Montuire S, Maridet O, Escarguel G (2005) Rodents and climate: a new model for estimating past temperatures. Earth Planet Sci Lett 235:408–420CrossRefGoogle Scholar
  44. Li S, He K, Yu F-H, Yang Q-S (2013) Molecular phylogeny and biogeography of Petaurista inferred from the Cytochrome b Gene, with implications for the taxonomic status of P. caniceps, P. marica and P. sybilla. PLoS One 8(7):e7046Google Scholar
  45. Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452CrossRefPubMedGoogle Scholar
  46. Luck GW, Daily GC, Ehrlich PR (2003) Population diversity and ecosystem services. Trends Ecol Evol 18:331–336CrossRefGoogle Scholar
  47. Ludt CJ, Schroeder W, Rottmann O, Kuehn R (2004) Mitochondrial DNA phylogeography of red deer (Cervus Elaphus). Mol Phylogenet Evol 31:1064–1083CrossRefPubMedGoogle Scholar
  48. Masters PM, Flemming NC (1983) Quaternary coast- lines and marine archaeology: towards the prehistory of land bridges and continental shelves. Academic Press. MatLab, LondonGoogle Scholar
  49. Mills C, Dawson DA, Horsburgh GJ, Godley BJ, Hodgson DJ (2013) Isolation and characterisation of hazel dormouse (Muscardinus avellanarius) microsatellite loci. Conserv Genet Resour 5:687–692CrossRefGoogle Scholar
  50. Montgelard C, Bentz S, Tirard C, Verneau O, Catzeflis FM (2002) Molecular systematics of sciurognathi (rodentia): the mitochondrial cytochrome b and 12S rRNA genes support the Anomaluroidea (Pedetidae and Anomaluridae). Mol Phylogenet Evol 22:220–233CrossRefPubMedGoogle Scholar
  51. Montgelard C, Matthee CA, Robinson TJ (2003) Molecular systematics of dormice (Rodentia: Gliridae) and the radiation of Graphiurus in Africa. Proc Biol Sci 270:1947–1955CrossRefPubMedPubMedCentralGoogle Scholar
  52. Moritz C (1994) Defining ‘evolutionarily significants units’ for conservation. Trends Ecol Evol 9:373–375CrossRefPubMedGoogle Scholar
  53. Mortelliti A, Santulli Sanzo G, Boitani L (2008) Species’ surrogacy for conservation planning: caveats from comparing the response of three arboreal rodents to habitat loss and fragmentation. Biodivers Conserv 18:1131–1145CrossRefGoogle Scholar
  54. Mortelliti A, Amori G, Capizzi D, Rondinini C, Boitani L (2010) Experimental design and taxonomic scope of fragmentation studies on European mammals: current status and future priorities. Mamm Rev 40:125–154CrossRefGoogle Scholar
  55. Mouton A, Grill A, Sara M, Kryštufek B, Randi E, Amori G et al (2012a) Using phylogeography to promote dormouse conservation: the case of Muscardinus avellanarius (Rodentia, Gliridae). Peckiana 8:255–264Google Scholar
  56. Mouton A, Grill A, Sara M, Kryštufek B, Randi E, Amori G, Juškaitis R, Aloise G, Mortelliti A, Panchetti F, Michaux J (2012b) Evidence of a complex phylogeographic structure in the common dormouse, Muscardinus avellanarius (Rodentia: Gliridae). Biol J Linn Soc 105:648–664CrossRefGoogle Scholar
  57. Nabholz B, Glemin S, Galtier N (2008) Strong variations of mitochondrial mutation rate across mammals—the longevity hypothesis. Mol Biol Evol 25(1):120–130CrossRefPubMedGoogle Scholar
  58. Nadachoswki A, Daoud A (1995) Patterns of myoxid evolution in the Pliocene and Pleiostocene of Europe. Hystrix 6:141–149Google Scholar
  59. Naderi G, Kaboli M, Koren T, Karami M, Zupan S, Rezaei HR, Krystufek B (2014) Mitochondrial evidence uncovers a refugium for the fat dormouse (Glis glis Linnaeus, 1766) in Hyrcanian forests of northern Iran. Mamm Biol-Zeitschrift für Säugetierkd 79:202–207CrossRefGoogle Scholar
  60. Naim D, Kemp SJ, Telfer S, Watts PC (2009) Isolation and characterization of 10 microsatellite loci in the common dormouse Muscardinus avellanarius. Mol Ecol Res 9:1010–1012CrossRefGoogle Scholar
  61. Nunome M, Yasuda SP, Sato JJ, Vogel P, Suzuki H (2007) Phylogenetic relationships and divergence times among dormice (Rodentia, Gliridae) based on three nuclear genes. Zool Scr 36:537–546CrossRefGoogle Scholar
  62. Parnmen S, Rangsiruji A, Mongkolsuk P, Boonpragob K, Nutakki A, Lumbsch HT (2012) Using phylogenetic and coalescent methods to understand the species diversity in the Cladia aggregata complex (Ascomycota, Lecanorales). PLoS One 7:e52245CrossRefPubMedPubMedCentralGoogle Scholar
  63. Perez GCL, Libois R, Nieberding CM (2013) Phylogeography of the garden dormouse Eliomys quercinus in the western Palearctic region. J Mammal 94:202–217CrossRefGoogle Scholar
  64. Pons J, Barraclough T, Gomez-Zurita J, Cardoso A, Duran D, Hazell S et al (2006) Sequence- based species delimitation for the DNA taxonomy of undescribed insects. Syst Biol 55:595–609CrossRefPubMedGoogle Scholar
  65. Posada D, Crandall KA (1998) MODELTEST: testing the model of DNA substitution. Bioinformatics 14:817–818CrossRefPubMedGoogle Scholar
  66. Pritchard JK, Wen W (2004) Documentation for STRUCTURE Software Version 2. Available from
  67. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedPubMedCentralGoogle Scholar
  68. Rambaut A, Drummond AJ (2009) Tracer v1.5. Available:
  69. Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Hohna S et al (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–554CrossRefPubMedPubMedCentralGoogle Scholar
  70. Rousset F (2008) GENEPOP ‘ 007: a complete re-implementation of the GENEPOP software for Windows and Linux. Mol Ecol Res 8:103–106CrossRefGoogle Scholar
  71. Ryder OA (1986) Species conservation and systematics: the dilemma of subspecies. Trends Ecol Evol 1:9–10CrossRefGoogle Scholar
  72. Santucci F, Emerson BC, Hewitt GM (1998) Mitochondrial DNA phylogeography of European hedgehogs. Mol Ecol 7:1163–1172CrossRefPubMedGoogle Scholar
  73. Sauer J, Hausdorf B (2012) A comparison of DNA-based methods for delimiting species in a Cretan land snail radiation reveals shortcomings of exclusively. Cladistics 28:300–316CrossRefGoogle Scholar
  74. Searle JB, Kotlίk P, Rambau RV, Marková S, Herman JS, McDevitt AD (2009) The Celtic fringe of Britain: insights from small mammal phylogeography. Proc R Soc B Biol Sci 276:201–207CrossRefGoogle Scholar
  75. Simson S, Ferrucci L, Kurtonur C, Ozkan B, Filippucci MG (1994) Phalli and bacula of european dormice: description and comparison. Hystrix 6:231–244Google Scholar
  76. Snell C, Tetteh J, Evans IH (2005) Phylogeography of the pool frog (Rana lessonae Camerano) in Europe: evidence for native status in Great Britain and for an unusual postglacial colonization route. Biol J Linn Soc 85:41–51CrossRefGoogle Scholar
  77. Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690CrossRefPubMedGoogle Scholar
  78. Stamatakis A, Hoover P, Rougemont J (2008) A rapid bootstrap algorithm for the RAxML web-servers. Syst Biol 57:758–771CrossRefPubMedGoogle Scholar
  79. Storch G (1978) Gliridae-Schlafer. In: Niethammer J, Krapp F (eds) Handbuch der saugetiere Europas. Akad, Wiesbaden, pp 201–280Google Scholar
  80. Tamura K, Peterson D, Peterson N, Stecher G, Nei N, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739CrossRefPubMedPubMedCentralGoogle Scholar
  81. Tobien H (1967) Subdivision of Pontian mammal faunas. Giorn Geol 35:1–5Google Scholar
  82. Vilhelmsen H (2003) Status of dormice (Muscardinus avellanarius) in Denmark. Acta Zool Acad Sci Hungaricae 49:139–145Google Scholar
  83. Wilting A, Courtiol A, Christiansen P, Niedballa J, Scharf AK, Orlando L, Balkenhol N, Hofer H, Kramer-Schadt S, Fickel J, Kitchener AC (2015) Planning tiger recovery: understanding intraspecific variation for effective conservation. Sci Adv 1:e1400175CrossRefPubMedPubMedCentralGoogle Scholar
  84. Zachos FE, Lovari S (2013) Taxonomic inflation and the poverty of the Phylogenetic Species Concept – a reply to Gippoliti and Groves. Hystrix 24(2):142–144Google Scholar
  85. Zachos JC, Pagani M, Sloan L, Thomas E, Billups K (2001) Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292:686–693CrossRefPubMedGoogle Scholar
  86. Zachos FE, Apollonio M, Bärmann EV, Festa-bianchet M, Göhlich U, Christian J et al (2013) Species inflation and taxonomic artefacts—a critical comment on recent trends in mammalian classification. Mamm Biol-Zeitschrift für Säugetierkd 78:1–6CrossRefGoogle Scholar
  87. Zhang D-X, Hewitt GM (2003) Nuclear DNA analyses in genetic studies of populations: practice, problems and prospects. Mol Ecol 12:563–584CrossRefPubMedGoogle Scholar
  88. Zhang J, Kapli P, Pavlidis P, Stamatakis A (2013) A general species delimitation method with applications to phylogenetic placements. Bioinformatics 29(22):1–8CrossRefGoogle Scholar
  89. Zink RM, Barrowclough GF (2008) Mitochondrial DNA under siege in avian phylogeography. Mol Ecol 17:2107–2121CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • A. Mouton
    • 1
  • A. Mortelliti
    • 2
  • A. Grill
    • 3
  • M. Sara
    • 4
  • B. Kryštufek
    • 5
  • R. Juškaitis
    • 6
  • A. Latinne
    • 1
    • 7
  • G. Amori
    • 8
  • E. Randi
    • 9
    • 23
  • S. Büchner
    • 10
  • B. Schulz
    • 11
  • S. Ehlers
    • 12
  • J. Lang
    • 13
  • P. Adamik
    • 14
  • G. Verbeylen
    • 15
  • M. Dorenbosch
    • 16
  • R. Trout
    • 17
  • M. Elmeros
    • 18
  • G. Aloise
    • 19
  • S. Mazzoti
    • 20
  • F. Matur
    • 21
  • F. Poitevin
    • 22
  • J. R. Michaux
    • 1
    • 24
  1. 1.Institut de Botanique, Bâtiment 22Université de Liège (Sart Tilman)LiègeBelgium
  2. 2.Department of Wildlife Ecology, Fisheries and Conservation BiologyUniversity of MaineOronoUSA
  3. 3.Department for Botany and Biodiversity Research University of ViennaViennaAustria
  4. 4.Dipartimento Biologia Ambientale e BiodiversitàLaboratorio di Zoogeografia ed Ecologia AnimalePalermoItaly
  5. 5.Slovenian Museum of Natural HistoryLjubljanaSlovenia
  6. 6.Institute of Ecology of Nature Research CentreVilniusLithuania
  7. 7.EcoHealth AllianceNew YorkUSA
  8. 8.CNR, Institute of Ecosystem StudiesRomeItaly
  9. 9.Laboratorio di GeneticaIstituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA)Ozzano EmiliaItaly
  10. 10.MarkersdorfGermany
  11. 11.Stiftung Naturschutz Schleswig-HolsteinMolfseeGermany
  12. 12.KielGermany
  13. 13.Working Group for Wildlife BiologyJustus Liebig University GiessenGiessenGermany
  14. 14.Department of ZoologyPalacky UniversityOlomoucCzech Republic
  15. 15.Natuurpunt Studie/Mammal Working GroupMechelenBelgium
  16. 16.NatuurbalansRadboud UniversiteitNijmegenNetherlands
  17. 17.Holtside BungalowFarnhamUK
  18. 18.Department of Bioscience-Wildlife Ecology and BiodiversityAarhus UniversityRøndeDenmark
  19. 19.Museo di Storia Naturale della Calabria e Orto BotanicoRendeItaly
  20. 20.Museo di Storia NaturaleFerraraItaly
  21. 21.Department of Biology, Science and Art FacultyBülent Ecevit UniversityZonguldakTurkey
  22. 22.CEFE UMR 5175, CNRS-Université de Montpellier-Université Paul-Valéry Montpellier-EPHE – Laboratory Biogeography and Vertebrate EcologyMontpellierFrance
  23. 23.Department of Biotechnology, Chemistry and Environmental EngineeringAalborg UniversityAalborgDenmark
  24. 24.CIRAD Animal et Gestion Intégrée des Risques (AGIRs)Montpellier Cedex 5France

Personalised recommendations