Conservation Genetics

, Volume 18, Issue 1, pp 159–170 | Cite as

Slow motion extinction: inbreeding, introgression, and loss in the critically endangered mangrove finch (Camarhynchus heliobates)

  • Lucinda P. LawsonEmail author
  • Birgit Fessl
  • F. Hernán Vargas
  • Heather L. Farrington
  • H. Francesca Cunninghame
  • Jakob C. Mueller
  • Erwin Nemeth
  • P. Christian Sevilla
  • Kenneth Petren
Research Article


The critically endangered mangrove finch is now limited to one small population on the west coast of Isabela Island in the Galápagos, but 100 years ago multiple populations were found on the islands of Isabela and Fernandina. By accessing genetic datasets through museum sampling, we are able to put current levels of genetic diversity and hybridization with congenerics into a historical context for enhanced conservation. In this study, we compared neutral genetic diversity of the now extinct Fernandina population to historical and current diversity of the Isabela population using 14 microsatellite markers. We found that current genetic diversity of the last remnant population (~80–100 individuals) is far below levels 100 years ago, with only about half of the allelic diversity retained. Current genetic diversity is close to levels in the Fernandina population that went extinct by the 1970s. Bottleneck analysis did not show a strong signature of recent decline, and instead implies that this species may have consistently had low population sizes with wide fluctuations. Hybridization with congeneric woodpecker finches was found in the modern Isabela population, implying that some individuals within the few remaining breeding pairs are finding mates with woodpecker finches. Within the context of historical low population sizes and wide fluctuations, current conservation efforts may help the mangrove finch face current extinction threats and avoid the fate of the Fernandina population. However, this historically small lineage will likely continue to face challenges associated with small specialist species surrounded by a widely-distributed sister lineage producing viable hybrids.


Ancient DNA Bottleneck Camarhynchus pallidus Darwin’s finches Galápagos Hybrids 



We thank the Galápagos National Park Directorate, the Charles Darwin Research Station, and the California Academy of Sciences. This research was supported by Darwin Initiative (15-005, EIDP0031, 162/12/018), Save our Species (2011A-023), Galápagos Conservancy (002-2015) and International Community Foundation with a grant awarded by The Leona M. and Harry B. Helmsley Charitable Trust (20160098), Galápagos Conservation Trust (CT14-171), the Mohammed Bin Zayed Species Conservation Fund (14259510), Durrell Wildlife Conservation Trust, the National Science Foundation (DEB-0317687), the Frankfurt Zoological Society (FZS 1224/97), Swiss Association of Friends of the Galápagos Islands, and the Max Planck Society. We thank Andrew Clack for assisting in ancient DNA techniques, Bart Kempenaers for providing materials and facility access at Max Planck for genotyping, and Peter and Rosemary Grant who initiated the work on the mangrove finch and have, over the years, helped and advised on the project. Research was carried out under IACUC protocol (12-04-09-01) and with approval for ethical research from Galápagos National Park. This publication is contribution number 2139 of the Charles Darwin Foundation for the Galápagos Islands.

Supplementary material

10592_2016_890_MOESM1_ESM.pdf (109 kb)
Supplementary material 1 (PDF 109 kb)
10592_2016_890_MOESM2_ESM.xlsx (16 kb)
Supplementary material 2 (XLSX 16 kb)
10592_2016_890_MOESM3_ESM.xlsx (37 kb)
Supplementary material 3 (XLSX 37 kb)
10592_2016_890_MOESM4_ESM.xlsx (42 kb)
Supplementary material 4 (XLSX 41 kb)


  1. Adams JR, Vucetich LM, Hedrick PW et al (2011) Genomic sweep and potential genetic rescue during limiting environmental conditions in an isolated wolf population. Proc R Soc B 278:3336–3344. doi: 10.1098/rspb.2011.0261 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Allentoft ME, Heller R, Oskam CL et al (2014) Extinct New Zealand megafauna were not in decline before human colonization. PNAS 111:4922–4927. doi: 10.1073/pnas.1314972111 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Alongi DM (2002) Present state and future of the world’s mangrove forests. Environ Conserv 29:331–349. doi: 10.1017/S0376892902000231 CrossRefGoogle Scholar
  4. Alongi DM (2015) The impact of climate change on mangrove forests. Curr Clim Change Rep 1:30–39. doi: 10.1007/s40641-015-0002-x CrossRefGoogle Scholar
  5. Anderson E, Stebbins GL (1954) Hybridization as an evolutionary stimulus. Evolution 8:378–388. doi: 10.2307/2405784 CrossRefGoogle Scholar
  6. Antao T, Pérez-Figueroa A, Luikart G (2011) Early detection of population declines: high power of genetic monitoring using effective population size estimators. Evolut Appl 4:144–154. doi: 10.1111/j.1752-4571.2010.00150.x CrossRefGoogle Scholar
  7. Arnold ML (2004) Transfer and origin of adaptations through natural hybridization: were Anderson and Stebbins right? Plant Cell 16:562–570. doi: 10.1105/tpc.160370 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Blackburn TM, Cassey P, Duncan RP et al (2004) Avian extinction and mammalian introductions on oceanic islands. Science 305:1955–1958. doi: 10.1126/science.1101617 CrossRefPubMedGoogle Scholar
  9. Bristol RM, Tucker R, Dawson DA et al (2013) Comparison of historical bottleneck effects and genetic consequences of re-introduction in a critically endangered island passerine. Mol Ecol 22:4644–4662. doi: 10.1111/mec.12429 CrossRefPubMedGoogle Scholar
  10. Brumm H, Farrington H, Petren K, Fessl B (2010) Evolutionary dead end in the Galápagos: divergence of sexual signals in the rarest of Darwin’s finches. PLoS One 5:e11191. doi: 10.1371/journal.pone.0011191 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Butchart SHM, Stattersfield AJ, Collar NJ (2006) How many bird extinctions have we prevented? Oryx 40:266–278. doi: 10.1017/S0030605306000950 CrossRefGoogle Scholar
  12. Case TJ (1996) Global patterns in the establishment and distribution of exotic birds. Biol Conserv 78:69–96. doi: 10.1016/0006-3207(96)00019-5 CrossRefGoogle Scholar
  13. Causton CE, Peck SB, Sinclair BJ et al (2006) Alien insects: threats and implications for conservation of Galápagos Islands. Ann Entomol Soc Am 99:121–143. doi: 10.1603/0013-8746(2006)099 CrossRefGoogle Scholar
  14. Cornuet JM, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144:2001–2014PubMedPubMedCentralGoogle Scholar
  15. Cruz F, Josh Donlan C, Campbell K, Carrion V (2005) Conservation action in the Galàpagos: feral pig (Sus scrofa) eradication from Santiago Island. Biol Conserv 121:473–478. doi: 10.1016/j.biocon.2004.05.018 CrossRefGoogle Scholar
  16. Cunninghame F, Young H, Sevilla C, et al (2013) A trial translocation of the critically endangered mangrove finch: conservation management to prevent the extinction of Darwin’s rarest finch. Galapagos Report 2011–2012 GNPD, GCREG, CDF and GC Puerto Ayora, Galapagos, Ecuador 174–179Google Scholar
  17. Cunninghame F, Switzer R, Parks B, et al (2015) Conserving the critically endangered mangrove finch: head-starting to increase population size. Galapagos Report 2013–2014 GNPD, GCREG, CDF and GC Puerto Ayora, Galapagos, Ecuador 151–157Google Scholar
  18. Donlan CJ, Wilcox C (2008) Diversity, invasive species and extinctions in insular ecosystems. J Appl Ecol 45:1114–1123. doi: 10.1111/j.1365-2664.2008.01482.x CrossRefGoogle Scholar
  19. Dussex N, Rawlence NJ, Robertson BC (2015) Ancient and contemporary DNA reveal a pre-human decline but no population bottleneck associated with recent human persecution in the Kea (Nestor notabilis). PLoS One 10:e0118522. doi: 10.1371/journal.pone.0118522 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Dvorak M, Vargas H, Fessl B, Tebbich S (2004) On the verge of extinction: a survey of the mangrove finch Cactospiza heliobates and its habitat on the Galápagos Islands. Oryx 38:171–179CrossRefGoogle Scholar
  21. Dvorak M, Fessl B, Nemeth E et al (2012) Distribution and abundance of Darwin’s finches and other land birds on Santa Cruz Island, Galápagos: evidence for declining populations. Oryx 46:78–86. doi: 10.1017/S0030605311000597 CrossRefGoogle Scholar
  22. Earl DA, vonHoldt BM (2011) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361. doi: 10.1007/s12686-011-9548-7 CrossRefGoogle Scholar
  23. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620. doi: 10.1111/j.1365-294X.2005.02553.x CrossRefPubMedGoogle Scholar
  24. Evans SR, Sheldon BC (2008) Interspecific patterns of genetic diversity in birds: correlations with extinction risk. Conserv Biol 22:1016–1025. doi: 10.1111/j.1523-1739.2008.00972.x CrossRefPubMedGoogle Scholar
  25. Excoffier L, Lischer HE (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567CrossRefPubMedGoogle Scholar
  26. Excoffier L, Laval G, Schneider S (2005) Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evolutionary bioinformatics online 1:47Google Scholar
  27. Farnsworth EJ, Ellison AM (1997) The global conservation status of mangroves. Ambio (Sweden) 26:328–334Google Scholar
  28. Farrington HL, Petren K (2011) A century of genetic change and metapopulation dynamics in the Galápagos Warbler finches (Certhidea). Evolution 65:3148–3161. doi: 10.1111/j.1558-5646.2011.01385.x CrossRefPubMedGoogle Scholar
  29. Farrington HL, Lawson LP, Clark CM, Petren K (2014) The evolutionary history of Darwin’s finches: speciation, gene flow, and introgression in a fragmented landscape. Evolution 68:2932–2944. doi: 10.1111/evo.12484 CrossRefPubMedGoogle Scholar
  30. Fessl B, Kleindorfer S, Tebbich S (2006) An experimental study on the effects of an introduced parasite in Darwin’s finches. Biol Conserv 127:55–61. doi: 10.1016/j.biocon.2005.07.013 CrossRefGoogle Scholar
  31. Fessl B, Loaiza AD, Tebbich S, Young HG (2010a) Feeding and nesting requirements of the critically endangered mangrove finch Camarhynchus heliobates. J Ornithol 152:453–460. doi: 10.1007/s10336-010-0610-0 CrossRefGoogle Scholar
  32. Fessl B, Young GH, Young RP et al (2010b) How to save the rarest Darwin’s finch from extinction: the mangrove finch on Isabela Island. Philos Trans R Soc of Lond B 365:1019–1030. doi: 10.1098/rstb.2009.0288 CrossRefGoogle Scholar
  33. Fessl B, Dvorak M, Vargas H, Young HG (2011) Recent conservation efforts and identification of the critically endangered mangrove Finche Camarhynchus heliobates in the Galapagos. Contiga 33:27–33Google Scholar
  34. Garza JC, Williamson EG (2001) Detection of reduction in population size using data from microsatellite loci. Mol Ecol 10:305–318. doi: 10.1046/j.1365-294X.2001.01190.x CrossRefPubMedGoogle Scholar
  35. Goudet J (1995) FSTAT (version 1.2): a computer program to calculate F-statistics. J Hered 86:485–486Google Scholar
  36. Grant PR, Grant BR (1992) Hybridization of bird species. Science 256:193–197. doi: 10.1126/science.256.5054.193 CrossRefPubMedGoogle Scholar
  37. Grant PR, Grant BR (1997) The Rarest of Darwin’s finches. Conserv Biol 11:119–126. doi: 10.1046/j.1523-1739.1997.95399.x CrossRefGoogle Scholar
  38. Grant PR, Grant BR (2014) 40 Years of Evolution: Darwin’s Finches on Daphne Major Island. Princeton University Press, WoodstockGoogle Scholar
  39. Grant PR, Grant BR, Markert JA et al (2004) Convergent evolution of Darwin’s finches caused by introgressive hybridization and selection. Evolution 58:1588–1599CrossRefPubMedGoogle Scholar
  40. Grant PR, Grant BR, Petren K (2005a) Hybridization in the recent past. Am Nat 166:56–67CrossRefPubMedGoogle Scholar
  41. Grant PR, Grant BR, Petren K, Keller LF (2005b) Extinction behind our backs: the possible fate of one of the Darwin’s finch species on Isla Floreana, Galápagos. Biol Conserv 122:499–503CrossRefGoogle Scholar
  42. Harper GA, Carrion V (2011) Introduced rodents in the Galápagos: colonisation, removal and the future. In: Veitch CR, Clout MN, Towns DR (eds) Island invasives: eradication and management. IUCN, Gland, pp 63–66Google Scholar
  43. Harris MP (1973) The Galápagos avifauna. Condor 75:265–278. doi: 10.2307/1366166 CrossRefGoogle Scholar
  44. Hedrick PW (2009) Evolutionary rescue in a changing world. Conserv Biol 9:996–1007. doi: 10.1046/j.1523-1739.1995.9050988.x-i1 CrossRefGoogle Scholar
  45. Hedrick PW (2013) Adaptive introgression in animals: examples and comparison to new mutation and standing variation as sources of adaptive variation. Mol Ecol 22:4606–4618. doi: 10.1111/mec.12415 CrossRefPubMedGoogle Scholar
  46. Hedrick P, Waits L (2005) Conservation genetics: what ancient DNA tells us. Heredity 94:463–464. doi: 10.1038/sj.hdy.6800647 CrossRefPubMedGoogle Scholar
  47. Hill WG (1981) Estimation of effective population size from data on linkage disequilibrium. Genet Res 38:209–216. doi: 10.1017/S0016672300020553 CrossRefGoogle Scholar
  48. IUCN (2016) The IUCN red list of threatened species. Version 2016–2Google Scholar
  49. Kalinowski ST, Taper ML, Marshall TC (2007) Revising how the computer program cervus accommodates genotyping error increases success in paternity assignment. Mol Ecol 16:1099–1106. doi: 10.1111/j.1365-294X.2007.03089.x CrossRefPubMedGoogle Scholar
  50. Keller LF, Jeffery KJ, Arcese P et al (2001) Immigration and the ephemerality of a natural population bottleneck: evidence from molecular markers. Proc R Soc Lond B 268:1387–1394. doi: 10.1098/rspb.2001.1607 CrossRefGoogle Scholar
  51. Kendrick GW, Morse K (1990) Evidence of recent mangrove decline from an archaeological site in Western Australia. Aust J Ecol 15:349–353. doi: 10.1111/j.1442-9993.1990.tb01040.x CrossRefGoogle Scholar
  52. Kleindorfer S, O’Connor JA, Dudaniec RY et al (2014a) Species collapse via hybridization in Darwin’s tree finches. Am Nat 183:325–341. doi: 10.1086/674899 CrossRefPubMedGoogle Scholar
  53. Kleindorfer S, Peters KJ, Custance G et al (2014b) Changes in Philornis infestation behavior threaten Darwin’s finch survival. Curr Zool 60:542–550CrossRefGoogle Scholar
  54. Lamichhaney S, Berglund J, Almén MS et al (2015) Evolution of Darwin’s finches and their beaks revealed by genome sequencing. Nature 518:371–375. doi: 10.1038/nature14181 CrossRefPubMedGoogle Scholar
  55. Lee TM, Jetz W (2011) Unravelling the structure of species extinction risk for predictive conservation science. Pro R Soc Lond 278:1329–1338. doi: 10.1098/rspb.2010.1877 CrossRefGoogle Scholar
  56. Levin II, Zwiers P, Deem SL et al (2013) Multiple lineages of avian malaria parasites (Plasmodium) in the Galapagos Islands and evidence for arrival via migratory birds. Conserv Biol 27:1366–1377. doi: 10.1111/cobi.12127 CrossRefPubMedGoogle Scholar
  57. Loehle C, Eschenbach W (2012) Historical bird and terrestrial mammal extinction rates and causes. Divers Distrib 18:84–91. doi: 10.1111/j.1472-4642.2011.00856.x CrossRefGoogle Scholar
  58. Mauchamp A, Atkinson R (2010) Rapid, recent and irreversible habitat loss: Scalesia forest on the Galapagos Islands. Galapagos Report 2009–2010 GNPD, GCREG, CDF and GC Puerto Ayora, Galapagos, Ecuador, 108-112Google Scholar
  59. Melbourne BA, Hastings A (2008) Extinction risk depends strongly on factors contributing to stochasticity. Nature 454:100–103. doi: 10.1038/nature06922 CrossRefPubMedGoogle Scholar
  60. Méndez M, Vögeli M, Tella JL, Godoy JA (2014) Joint effects of population size and isolation on genetic erosion in fragmented populations: finding fragmentation thresholds for management. Evol Appl 7:506–518. doi: 10.1111/eva.12154 CrossRefPubMedPubMedCentralGoogle Scholar
  61. O’Grady JJ, Brook BW, Reed DH et al (2006) Realistic levels of inbreeding depression strongly affect extinction risk in wild populations. Biol Cons 133:42–51. doi: 10.1016/j.biocon.2006.05.016 CrossRefGoogle Scholar
  62. Parker PG, Whiteman NK (2012) Evolution of pathogens and parasites on the Galápagos Islands. In: Wolff M, Gardener M (eds) The Role of science for conservation. Routledge, New York, pp 35–51Google Scholar
  63. Parker PG, Buckles EL, Farrington H et al (2011) 110 Years of Avipoxvirus in the Galapagos Islands. PLoS One 6:e15989. doi: 10.1371/journal.pone.0015989 CrossRefPubMedPubMedCentralGoogle Scholar
  64. Peel D, Ovenden JR, Peel SL (2004) NeEstimator: software for estimating effective population size, Version 1.3Google Scholar
  65. Petren K, Grant BR, Grant PR (1999) A phylogeny of Darwin’s finches based on microsatellite DNA length variation. Proc R Soc Lond B 266:321–329CrossRefGoogle Scholar
  66. Petren K, Grant PR, Grant BR, Keller LF (2005) Comparative landscape genetics and the adaptive radiation of Darwin’s finches: the role of peripheral isolation. Mol Ecol 14:2943–2957. doi: 10.1111/j.1365-294X.2005.02632.x CrossRefPubMedGoogle Scholar
  67. Petren K, Grant PR, Grant BR et al (2010) Multilocus genotypes from Charles Darwin’s finches: biodiversity lost since the voyage of the Beagle. Philos Trans R Soc Lond B 365:1009–1018. doi: 10.1098/rstb.2009.0316 CrossRefGoogle Scholar
  68. Piry S, Luikart G, Cornuet J-M (1999) Computer note. BOTTLENECK: a computer program for detecting recent reductions in the effective size using allele frequency data. J Hered 90:502–503. doi: 10.1093/jhered/90.4.502 CrossRefGoogle Scholar
  69. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedPubMedCentralGoogle Scholar
  70. Purvis A, Gittleman JL, Cowlishaw G, Mace GM (2000) Predicting extinction risk in declining species. Proc R Soc Lond B 267:1947–1952. doi: 10.1098/rspb.2000.1234 CrossRefGoogle Scholar
  71. Raymond M, Rousset F (1995) GENEPOP (Version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249Google Scholar
  72. Rhymer JM, Simberloff D (1996) Extinction by hybridization and introgression. Annu Rev Ecol Syst 27:83–109CrossRefGoogle Scholar
  73. Rivera-Parra JL, Levin II, Parker PG (2014) Comparative ectoparasite loads of five seabird species in the Galapagos Islands. J Parasitol 100:569–577. doi: 10.1645/12-141.1 CrossRefPubMedGoogle Scholar
  74. Rollins LA, Whitehead MR, Woolnough AP et al (2015) Is there evidence of selection in the dopamine receptor D4 gene in Australian invasive starling populations? Curr Zool 61:505–519CrossRefGoogle Scholar
  75. Schwartz MK, Luikart G, Waples RS (2007) Genetic monitoring as a promising tool for conservation and management. Trends Ecol Evol 22:25–33. doi: 10.1016/j.tree.2006.08.009 CrossRefPubMedGoogle Scholar
  76. Smith KF, Sax DF, Lafferty KD (2006) Evidence for the role of infectious disease in species extinction and endangerment. Conserv Biol 20:1349–1357. doi: 10.1111/j.1523-1739.2006.00524.x CrossRefPubMedGoogle Scholar
  77. Snodgrass RE, Heller E (1904) Papers from the Hopkins Stanford Galapagos expedition, 1898–1899. XVI. Birds. Proc Wash Acad Sci 5:231–372Google Scholar
  78. Spurgin LG, Wright DJ, van der Velde M et al (2014) Museum DNA reveals the demographic history of the endangered Seychelles warbler. Evol Appl 7:1134–1143. doi: 10.1111/eva.12191 CrossRefPubMedPubMedCentralGoogle Scholar
  79. Steadman DW, Stafford TW Jr, Donahue DJ, Jull AJT (1991) Chronology of holocene vertebrate extinction in the Galápagos Islands. Quatern Res 36:126–133. doi: 10.1016/0033-5894(91)90021-V CrossRefGoogle Scholar
  80. Todesco M, Pascual MA, Owens GL et al (2016) Hybridization and extinction. Evol Appl. doi: 10.1111/eva.12367 PubMedPubMedCentralGoogle Scholar
  81. Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) Micro-checker: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538. doi: 10.1111/j.1471-8286.2004.00684.x CrossRefGoogle Scholar
  82. Walsh SJ, Mena CF (2012) Science and Conservation in the Galapagos Islands: Frameworks & Perspectives. Springer, New YorkGoogle Scholar
  83. Watson J, Trueman M, Tufet M et al (2010) Mapping terrestrial anthropogenic degradation on the inhabited islands of the Galapagos Archipelago. Oryx 44:79–82. doi: 10.1017/S0030605309990226 CrossRefGoogle Scholar
  84. Wikelski M, Foufopoulos J, Vargas H, Snell H (2004) Galápagos birds and diseases: invasive pathogens as threats for island species. Ecol Soc 9:5–15CrossRefGoogle Scholar
  85. Wium-Andersen S, Hamann O (1986) Manglares de las Islas Galápagos. Inst Geogr Militar Rev Geogr 23:101–122Google Scholar
  86. Wolf DE, Takebayashi N, Rieseberg LH (2001) Predicting the risk of extinction through hybridization. Conserv Biol 15:1039–1053. doi: 10.1046/j.1523-1739.2001.0150041039.x CrossRefGoogle Scholar
  87. Young HG, Cunninghame F, Fessl B, Vargas FH (2013) Mangrove finch Camarhynchus heliobates an obligate mangrove specialist from the Galapagos Islands. In: Gleason G, Victor TR (eds) Mangrove ecosystems. Nova Science Publishers Inc, New York, pp 107–121Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Lucinda P. Lawson
    • 1
    Email author
  • Birgit Fessl
    • 2
  • F. Hernán Vargas
    • 3
  • Heather L. Farrington
    • 1
    • 4
  • H. Francesca Cunninghame
    • 2
  • Jakob C. Mueller
    • 5
  • Erwin Nemeth
    • 6
    • 7
  • P. Christian Sevilla
    • 8
  • Kenneth Petren
    • 1
  1. 1.Department of Biological SciencesUniversity of CincinnatiCincinnatiUSA
  2. 2.Charles Darwin FoundationGalápagosEcuador
  3. 3.The Peregrine Fund, Neotropical ProgramBoiseUSA
  4. 4.North Carolina Museum of Natural SciencesRaleighUSA
  5. 5.Department of Behavioural Ecology & Evolutionary GeneticsMax Planck Institute for OrnithologySeewiesenGermany
  6. 6.Birdlife AustriaViennaAustria
  7. 7.Research Group Communication and Social BehaviourMax Planck Institute for OrnithologySeewiesenGermany
  8. 8.Galápagos National Park DirectorateGalápagosEcuador

Personalised recommendations