Skip to main content

Advertisement

Log in

A century of landscape disturbance and urbanization of the San Francisco Bay region affects the present-day genetic diversity of the California Ridgway’s rail (Rallus obsoletus obsoletus)

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

Fragmentation and loss of natural habitat have important consequences for wild populations and can negatively affect long-term viability and resilience to environmental change. Salt marsh obligate species, such as those that occupy the San Francisco Bay Estuary in western North America, occupy already impaired habitats as result of human development and modifications and are highly susceptible to increased habitat loss and fragmentation due to global climate change. We examined the genetic variation of the California Ridgway’s rail (Rallus obsoletus obsoletus), a state and federally endangered species that occurs within the fragmented salt marsh of the San Francisco Bay Estuary. We genotyped 107 rails across 11 microsatellite loci and a single mitochondrial gene to estimate genetic diversity and population structure among seven salt marsh fragments and assessed demographic connectivity by inferring patterns of gene flow and migration rates. We found pronounced genetic structuring among four geographically separate genetic clusters across the San Francisco Bay. Gene flow analyses supported a stepping stone model of gene flow from south-to-north. However, contemporary gene flow among the regional embayments was low. Genetic diversity among occupied salt marshes and genetic clusters were not significantly different. We detected low effective population sizes and significantly high relatedness among individuals within salt marshes. Preserving genetic diversity and connectivity throughout the San Francisco Bay may require attention to salt marsh restoration in the Central Bay where habitat is both most limited and most fragmented. Incorporating periodic genetic sampling into the management regime may help evaluate population trends and guide long-term management priorities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Albertson JD (1995) Ecology of the California clapper rail in South San Francisco Bay. MS Thesis, San Francisco State University, San Francisco

  • Albertson JD, Evens JG (2000) California clapper rail. In: Olofson PR (ed) Baylands ecosystem species and community profiles: life histories and environmental requirements of key plants, fish and wildlife. San Francisco Bay Area Wetland Ecosystem Goals project. San Francisco Bay Regional Water Quality Control Board, Oakland, pp 332–341

    Google Scholar 

  • Atwater BF, Conrad SG, Dowden JN, Hedel CW, MacDonald RL, Savage W (1979) History, landforms, and vegetation of the estuary's tidal marshes San Francisco Bay : the urbanized estuary : investigations into the Natural History of San Francisco Bay and Delta with reference to the influence of man : fifty-eighth annual meeting of the Pacific division/American Association for the Advancement of Science held at San Francisco State University, San Francisco, California, 12-16 June 1977, pp 347–386

  • Barr KR, Kus BE, Preston KL, Howell S, Perkins E, Vandergast AG (2015) Habitat fragmentation in coastal southern California disrupts genetic connectivity in the cactus wren (Campylorhynchus brunneicapillus). Mol Ecol 24:2349–2363

    Article  PubMed  Google Scholar 

  • Beerli P (2006) Comparison of Bayesian and maximum-likelihood inference of population genetic parameters. Bioinformatics 22:341–345

    Article  CAS  PubMed  Google Scholar 

  • Beerli P (2009) How to use Migrate or why are Markov chain Monte Carlo programs difficult to use? Population genetics for animal conservation, vol 17. Cambridge University Press, Cambridge, pp 42–79

    Chapter  Google Scholar 

  • Beerli P, Palczewski M (2010) Unified framework to evaluate panmixia and migration direction among multiple sampling locations. Genetics 185:313–326

    Article  PubMed  PubMed Central  Google Scholar 

  • Bouzat JL, Cheng HH, Lewin HA, Westemeier RL, Brawn JD, Paige KN (1998) Genetic evaluation of a demographic bottleneck in the greater prairie chicken. Conserv Biol 12:836–843

    Article  Google Scholar 

  • Brackett C, Maley J, Brumfield R, McRae S (2013) Characterization of microsatellite loci for a threatened species, the King Rail, Rallus elegans, using a next-generation sequencing protocol. Conserv Genet Resour 5:1189–1191

    Article  Google Scholar 

  • Brooks A (1940) The clapper rail of Morro Bay. Condor 42:126–127

    Google Scholar 

  • Bui T-VD, Takekawa JY, Overton CT, Schultz ER, Hull JM, Casazza ML (2015) Movements of radio-marked California Ridgway’s rails during monitoring surveys: implications for population monitoring. J Fish Wildl Manag 6:227–237

    Article  Google Scholar 

  • California Department of Fish and Game (2010) California clapper rail and California black rail Suisun Marsh Survey 2009. Monitoring report for the Suisun Marsh by California department of Fish and Game Bay-Delta Region to California Department of Water Resources. Contract #4600008033.

  • Casazza ML, Overton CT, Takekawa JY, Rohmer T, Navarre K (2008) Breeding behavior and dispersal of radio-marked California clapper rails. West Birds 39:101–106

    Google Scholar 

  • Chan YL, Arcese P (2002) Subspecific differentiation and conservation of song sparrows (Melospiza melodia) in the San Francisco Bay region inferred by microsatellite analysis. Auk 119:641–657

    Article  Google Scholar 

  • Chan YL, Hill CE, Maldonado JE, Fleischer RC (2006) Evolution and conservation of tidal-marsh vertebrates: molecular approaches. Stud Avian Biol 32:54–75

    Google Scholar 

  • Cohen DA (1895) The California clapper rail. Oologist 12:171–173

    Google Scholar 

  • Cornuet JM, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144:2001–2014

    CAS  PubMed  PubMed Central  Google Scholar 

  • Daehler CC, Strong DR (1997) Hybridization between introduced smooth cordgrass (Spartina alterniflora; Poaceae) and native California cordgrass (S. foliosa) in San Francisco Bay, California, USA. Am J Bot 84:607–611

    Article  CAS  PubMed  Google Scholar 

  • Dyer RJ, Nason JD, Garrick RC (2010) Landscape modelling of gene flow: improved power using conditional genetic distance derived from the topology of population networks. Mol Ecol 19:3746–3759

    Article  PubMed  Google Scholar 

  • Earl D, vonHoldt B (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361

    Article  Google Scholar 

  • Eddleman W, Conway C (1998) Clapper rail (Rallus longirostris). The birds of North America, no. 240. The Birds of North America, Inc., Philadelphia

    Google Scholar 

  • Evanno G, Castella E, Antoine C, Paillat G, Goudet J (2009) Parallel changes in genetic diversity and species diversity following a natural disturbance. Mol Ecol 18:1137–1144

    Article  PubMed  Google Scholar 

  • Faubet P, Waples RS, Gaggiotti OE (2007) Evaluating the performance of a multilocus Bayesian method for the estimation of migration rates. Mol Ecol 16(6):1149–1166

    Article  PubMed  Google Scholar 

  • Fischer J, Lindenmayer DB (2007) Landscape modification and habitat fragmentation: a synthesis. Glob Ecol Biogeogr 16:265–280

    Article  Google Scholar 

  • Fleischer RC, Fuller G, Ledig DB (1995) Genetic structure of endangered clapper rail (Rallus longirostris) populations in Southern California. Conserv Biol 9:1234–1243

    Article  Google Scholar 

  • Fotheringham AS, O’Kelly ME (1989) Spatial interaction models: formulation and applications. Kluwer Academic, Dordrecht

    Google Scholar 

  • Frankham R (2005) Genetics and extinction. Biol Conserv 126:131–140

    Article  Google Scholar 

  • Frankham R, Bradshaw CJA, Brook BW (2014) Genetics in conservation management: revised recommendations for the 50/500 rules, red list criteria and population viability analyses. Biol Conserv 170:56–63

    Article  Google Scholar 

  • Garcia EJ (1995) Conservation of the California clapper rail: an analysis of survey methods and habitat use in Marin County. University of California-Davis, California

    Google Scholar 

  • Gill R (1979) Status and distribution of the California clapper rail (Rallus longirostris obsoletus). Calif Fish Game 65:36–49

    Google Scholar 

  • Girard P, Takekawa J, Beissinger S (2010) Uncloaking a cryptic, threatened rail with molecular markers: origins, connectivity and demography of a recently-discovered population. Conserv Genet 11:2409–2418

    Article  Google Scholar 

  • Goals Project (1999) Baylands ecosystem habitat goals. A report of habitat recommendations prepared by the San Francisco Bay Area Wetlands Ecosystem Goals Project. Joint Publication of the U.S. Environmental Protection Agency, San Francisco, California, and San Francisco Bay Regional Water Quality Control Board, Oakland

  • Goldstein DB, Ruiz Linares A, Cavalli-Sforza LL, Feldman MW (1995) Genetic absolute dating based on microsatellites and the origin of modern humans. Proc Natl Acad Sci USA 92:6723–6727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grinnell JH, Miller AH (1994) The distribution of the birds of California. Pac Coast Avifauna 27:1–608

    Google Scholar 

  • Grosholz ED, Levin LA, Tyler AC, Neira C (2009) Changes in community structure and ecosystem function following Spartina alterniflora invasion of Pacific estuaries. In: Silliman BR, Bertness MD, Grosholz ED (eds) Human impacts on saltmarshes-a global perspective. Univsersity of California, Berkeley, pp 23–40

    Google Scholar 

  • Haddad NM et al (2015) Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci Adv 1:e1500052

    Article  PubMed  PubMed Central  Google Scholar 

  • Harding EK, Doak DF, Albertson J, Takekawa JE (1998) Predator management in San Francisco Bay wetlands: past trends and future strategies. Final Report prepared for U.S. Fish and Wildlife Service, Sacramento

  • Hedrick PW, Lacy RC, Allendorf FW, Soulé ME (1996) Directions in conservation biology: comments on Caughley. Conserv Biol 10:1312–1320

    Article  Google Scholar 

  • Hubisz MJ, Falush D, Stephens M, Pritchard JK (2009) Inferring weak population structure with the assistance of sample group information. Mol Ecol Resour 9:1322–1332

    Article  PubMed  PubMed Central  Google Scholar 

  • Hunter EA, Nibbelink NP, Alexander CR, Barrett K, Mengak LF, Guy RK, Moore CT, Cooper RJ (2015) Coastal vertebrate exposure to predicted habitat changes dues to sea level rise. Environ Manag 56:1528–1537

    Article  Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC) (2007) Summary for policymakers. In: Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

  • Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23:1801–1806

    Article  CAS  PubMed  Google Scholar 

  • Jamieson IG, Allendorf FW (2012) How does the 50/500 rule apply to MVPs? Trends Ecol Evol 27:578–584

    Article  PubMed  Google Scholar 

  • Jensen JL, Bohonak AJ, Kelley ST (2005) Isolation by distance, web service. BMC Genet 6:13

    Article  PubMed  PubMed Central  Google Scholar 

  • Johnson D (2001) Habitat fragmentation effects on birds in grasslands and wetlands: a critique of our knowledge. Great Plains Res 11:211–231

    Google Scholar 

  • Kalinowski ST (2005) HP-RARE 1.0: a computer program for performing rarefaction on measures of allelic richness. Mol Ecol Notes 5:187–189

    Article  CAS  Google Scholar 

  • Keller LF (1998) Inbreeding and its fitness effects in an insular population of song sparrows (Melospiza melodia). Evolution 52:240–250

    Article  Google Scholar 

  • Keller LF, Waller DM (2002) Inbreeding effects in wild populations. Trends Ecol Evol 17:230–241

    Article  Google Scholar 

  • Keyghobadi N, Roland J, Matter SF, Strobeck C (2005) Among- and within-patch components of genetic diversity respond at different rates to habitat fragmentation: an empirical demonstration. Proc R Soc Lond B 272(1562):553–560

    Article  Google Scholar 

  • Kozicky EL, Schmidt FW (1949) Nesting habits of the clapper rail in New Jersey. Auk 66:355–364

    Article  Google Scholar 

  • Lacy RC (2000) Considering threats to the viability of small populations using individual-based models. Ecol Bull 48:39–51

    Google Scholar 

  • Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Wood J, Nur N, Stralberg D, Herzog M (2009) California clapper rail (Rallus longirostris obsoletus) population monitoring: 2005–2009. Report to California Department of Fish and Game, Stockton

  • Luikart G, Sherwin WB, Steele BM, Allendorf FW (1998) Usefulness of molecular markers for detecting population bottlenecks via monitoring genetic change. Mol Ecol 7:963–974

    Article  CAS  PubMed  Google Scholar 

  • MacArthur RH, Wilson EO (1967) The theory of island biogeography. Monographs in population biology. Princeton University Press, Princeton

    Google Scholar 

  • Malamud-Roam FP, Lynn Ingram B, Hughes M, Florsheim JL (2006) Holocene paleoclimate records from a large California estuarine system and its watershed region: linking watershed climate and bay conditions. Quat Sci Rev 25(13–14):1570–1598

    Article  Google Scholar 

  • Maley JM, Brumfield RT (2013) Mitochondrial and next-generation sequence data used to infer phylogenetic relationships and species limits in the clapper/king rail complex. Condor 115:316–329

    Article  Google Scholar 

  • Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220

    CAS  PubMed  Google Scholar 

  • Markert JA et al (2010) Population genetic diversity and fitness in multiple environments. BMC Evol Biol 10:205

    Article  PubMed  PubMed Central  Google Scholar 

  • Matthysen E (2005) Density-dependent dispersal in birds and mammals. Ecography 28:403–416

    Article  Google Scholar 

  • McGranahan DA, Balk D, Anderson B (2007) The rising tide: assessing the risks of climate change and human settlements in low elevation coastal zones. Environ Urban 19:17–39

    Article  Google Scholar 

  • McRae BH, Dickson BG, Keitt TH, Shah VB (2008) Using circuit theory to model connectivity in ecology, evolution, and conservation. Ecology 89:2712–2724

    Article  PubMed  Google Scholar 

  • Meirmans PG (2014) Nonconvergence in Bayesian estimation of migration rates. Mol Ecol Resour 14:726–733

    Article  PubMed  Google Scholar 

  • Meirmans PG (2015) Seven common mistakes in population genetics and how to avoid them. Mol Ecol 24:3223–3231

    Article  PubMed  Google Scholar 

  • Miller MA, Pfeiffer W, Schwartz T (2010) Creating the CIPRES science gateway for inference of large phylogenetic trees. Proceedings of the Gateway Computing Environments Workshop (GCE), 14 Nov 2010, New Orleans, pp 1–8

  • Miller MP, Haig SM, Mullins TD, Popper KJ, Green M (2012) Evidence for population bottlenecks and subtle genetic structure in the yellow rail. Condor 114:100–112

    Article  Google Scholar 

  • Narum S (2006) Beyond Bonferroni: less conservative analyses for conservation genetics. Conserv Genet 7:783–787

    Article  CAS  Google Scholar 

  • Nichols FH, Cloern JE, Luoma SN, Peterson DH (1986) The modification of an estuary. Science 231:567–573

    Article  CAS  PubMed  Google Scholar 

  • Nusser JA, Goto RM, Ledig DB, Fleischer RC, Miller MM (1996) RAPD analysis reveals low genetic variability in the endangered light-footed clapper rail. Mol Ecol 5:463–472

    Article  CAS  PubMed  Google Scholar 

  • Overton C, Casazza M, Takekawa J, Strong D, Holyoak M (2014) Tidal and seasonal effects on survival rates of the endangered California clapper rail: does invasive Spartina facilitate greater survival in a dynamic environment? Biol Invasions 16:1897–1914

    Article  Google Scholar 

  • Peakall R, Lindenmayer DB (2006) Genetic insights into population recovery following experimental perturbation in a fragmented landscape. Biol Conserv 132:520–532

    Article  Google Scholar 

  • Peakall R, Smouse P (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28:2537–2539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peakall R, Ruibal M, Lindenmayer DB (2003) Spatial autocorrelation analysis offers new insights into gene flow in the Australian bush rat, Rattus fuscipes. Evolution 57:1182–1195

    Article  PubMed  Google Scholar 

  • Peery MZ et al (2012) Reliability of genetic bottleneck tests for detecting recent population declines. Mol Ecol 21:3403–3418

    Article  PubMed  Google Scholar 

  • Piry S, Luikart G, Cornuet J-M (1999) Computer note. BOTTLENECK: a computer program for detecting recent reductions in the effective size using allele frequency data. J Hered 90:502–503

    Article  Google Scholar 

  • Pritchard JK, Wen W (2004) Documentation for structure software: version 2. University of Chicago, Department of Human Genetics, Chicago, p 33

    Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pruett CL, Arcese P, Chan YL, Wilson AG, Patten MA, Keller LF, Winker K (2008) The effects of contemporary processes in maintaining the genetic structure of western song sparrows (Melospiza melodia). Heredity 101:67–74

    Article  CAS  PubMed  Google Scholar 

  • Queller DC, Goodnight KF (1989) Estimating relatedness using genetic markers. Evolution 43:258–275

    Article  Google Scholar 

  • Rambaut A, Suchard MA, Drummond AJ (2013) Tracer v1.6. http://tree.bio.ed.ac.uk/software/tracer/

  • Rohmer TC (2010) Tracking the California clapper rail: a home range study in anticipation of imminent habitat change. M.Sc. thesis, University of California, Davis

  • Rosenberg NA (2004) Distruct: a program for the graphical display of population structure. Mol Ecol Notes 4:137–138

    Article  Google Scholar 

  • Rousset F (2008) Genepop’007: a complete re-implementation of the genepop software for Windows and Linux. Mol Ecol Resour 8:103–106

    Article  PubMed  Google Scholar 

  • Rush SA, Gaines KF, Eddleman W, Conaway CJ (2012) Clapper rail (Rallus longirostris). The Birds of North America Online, Issue No. 340

  • Ryman N, Allendorf FW, Jorde PE, Laikre L, Hössjer O (2014) Samples from subdivided populations yield biased estimates of effective size that overestimate the rate of loss of genetic variation. Mol Ecol Resour 14:87–99

    Article  PubMed  Google Scholar 

  • Saether B-E et al (2005) Generation time and temporal scaling of bird population dynamics. Nature 436:99–102

    Article  CAS  PubMed  Google Scholar 

  • Schwartz MK, Luikart G, Waples RS (2007) Genetic monitoring as a promising tool for conservation and management. Trends Ecol Evol 22:25–33

    Article  PubMed  Google Scholar 

  • Schwarzbach SE, Albertson JD, Thomas CM (2006) Effects of predation, flooding, and contamination on reproductive success of California clapper rails (Rallus longirostris obsoletus) in San Francisco Bay. Auk 123:45–60

    Article  Google Scholar 

  • Silliman OP (1915) Range of the California clapper rail. Condor 17:201

    Article  Google Scholar 

  • Statham MJ, Aamoth S, Barthman-Thompson L, Estralla S, Fresquez S, Hernandez LD, Tertes R, Sacks BN (2016) Conservation genetics of the endangered San Francisco Bay endemic salt marsh harvest mouse (Reithodontomys raviventris). Conserv Genet. doi:10.1007/s10592-016-0843-4

    Google Scholar 

  • Takekawa JY et al (2006) Environmental threats to tidal marsh vertebrates in the San Francisco Bay Estuary. In: Greenberg R, Maldonado JE, Droege S, McDonald MV (eds) Studies in avian biology, 32nd edn. Cooper Ornithological Society, Camarillo, pp 176–197

    Google Scholar 

  • Takekawa JY et al (2013) Final report for sea-level rise response modeling for San Francisco bay estuary tidal marshes. USGS Open File Report 2013-1081. USGS, Vallejo

  • Tallmon DA, Koyuk A, Luikart G, Beaumont MA (2008) COMPUTER PROGRAMS: onesamp: a program to estimate effective population size using approximate Bayesian computation. Mol Ecol Resour 8:299–301

    Article  PubMed  Google Scholar 

  • Thorne KM, Buffington KJ, Swanson K, Takekawa J (2013) Storm surges and climate change implications for tidal marshes: insight from the San Francisco Bay Estuary, California, USA. Int J Clim Change 4:1–25

    Google Scholar 

  • Traill LW, Brook BW, Frankham RR, Bradshaw CJA (2010) Pragmatic population viability targets in a rapidly changing world. Biol Conserv 143:28–34

    Article  Google Scholar 

  • Unfried T, Hauser L, Marzluff J (2013) Effects of urbanization on Song Sparrow (Melospiza melodia) population connectivity. Conserv Genet 14:41–53

    Article  Google Scholar 

  • U.S. Fish and Wildlife Service (2013) Recovery plan for tidal marsh ecosystems of Northern and Central California. Sacramento, pp xviii+605

  • Van Houtan KS, Pimm SL, Halley JM, Bierregaard RO, Lovejoy TE (2007) Dispersal of Amazonian birds in continuous and fragmented forest. Ecol Lett 10:219–229

    Article  PubMed  Google Scholar 

  • Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) Micro-checker: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538

    Article  Google Scholar 

  • Vandergast AG, Wood DA, Thompson AR, Fisher M, Barrows CW, Grant TJ (2015) Drifting to oblivion? Rapid genetic differentiation in an endangered lizard following habitat fragmentation and drought. Divers Distrib. doi:10.1111/ddi.12398

    Google Scholar 

  • Waples RS, Do C, Chopelet J (2011) Calculating Ne and Ne/N in age-structured populations: a hybrid Felsenstein-Hill approach. Ecology 92:1513–1522

    Article  PubMed  Google Scholar 

  • Waples RS, Antao T, Luikart G (2014) Effects of overlapping generations on linkage disequilibrium estimates of effective population size. Genetics 197:769–780

    Article  PubMed  PubMed Central  Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-Statistics for the analysis of population structure. Evolution 38 (6):1358

    Article  Google Scholar 

  • Westemeier RL et al (1998) Tracking the long-term decline and recovery of an isolated population. Science 282:1695–1698

    Article  CAS  PubMed  Google Scholar 

  • Wilson GA, Rannala B (2003) Bayesian inference of recent migration rates using multilocus genotypes. Genetics 163:1177–1191

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We are grateful for the valuable comments from the associate editor and three anonymous reviewers and that helped improve a previous version of the manuscript. The microsatellite data and associated metadata used for this study can be obtained from ScienceBase (http://dx.doi.org/10.5066/F7HD7SQ0) and ND2 mtDNA sequences were deposited in GENBANK (KU505148-KU505209). We thank our field crews including A. Merritt, E. Schultz, K. Barry, L. Koenig, K. Sawyer, and J. Burton for collecting samples and locality information. We thank S. Bobzien, M. Taylor, and R. Trujillo for assistance and access to East Bay Regional Park District properties; and the U.S. Geological Survey San Francisco Bay Field Station staff for assistance with field work. We also thank the California Department of Fish and Wildlife, Don Edwards National Wildlife Refuge, Marin County Parks, and Las Gallinas Valley Sanitary District for granting us access to their properties. This project was funded by the U. S. Geological Survey Western Ecological Research Center and grants from the U.S. Fish and Wildlife Service, Region 8, Coastal Programs and Recovery Branches and by the California State Coastal Conservatory and Department of Fish and Wildlife. The blood and tissue samples were collected under U.S. Fish and Wildlife Service endangered species permit TE-020548, California Department of Fish and Wildlife Memorandum of Understanding and scientific collecting permits, U.S. Geological Survey Bird Banding Laboratory permit 21142, and the U.S. Geological Survey Western Ecological Research Center Animal Care and Use Committee. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dustin A. Wood.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1669 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wood, D.A., Bui, TV.D., Overton, C.T. et al. A century of landscape disturbance and urbanization of the San Francisco Bay region affects the present-day genetic diversity of the California Ridgway’s rail (Rallus obsoletus obsoletus). Conserv Genet 18, 131–146 (2017). https://doi.org/10.1007/s10592-016-0888-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-016-0888-4

Keywords

Navigation