Skip to main content

Advertisement

Log in

Conservation implications of small population size and habitat fragmentation in an endangered lupine

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

Conservation measures to preserve critically endangered species aim to maintain healthy and self-sustaining populations and often involve reintroductions. Effective introductions must take into account the genetic structure and diversity remaining in the species to inform choices of germplasm for introduction strategies. Lupinus aridorum (McFarlin ex Beckner; Fabaceae) is an endangered plant found on two disjunct ridge systems in central Florida. All plants are found in areas that are favored for human development and agriculture. Few options exist for introduction locations, so the most informed strategies must be used to preserve this species. We used ten microsatellite loci, developed for this species, to determine genetic diversity and genetic differentiation among populations, and to compare L. aridorum with two closely related congeners. Our results show a low level of diversity remaining in the species in comparison with a more abundant congener and similar levels of variability among each L. aridorum population. At least three L. aridorum populations exhibit a genetic signal of partial selfing. Hybridization with a closely-related congener was not apparent; however, additional crossing trials are needed to fully assess the possibility of hybridization. Although some sources list the taxonomy of L. aridorum as a variety of a Florida panhandle species, L. westianus (Small), the genetic differences revealed by our data support listing these two species as separate entities. Our findings can be used to guide sampling strategies for ex situ conservation such as providing a mixture of source populations to improve the probability of successful introductions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Beckner J (1982) Lupinus aridorum J.B. McFarlin ex Beckner (Fabaceae), a new species from central Florida. Phytologia 50:209–211

    Article  Google Scholar 

  • Bonnet E, Van de Peer Y (2002) zt: a software tool for simple and partial Mantel tests. J Stat Softw 7:1–12

    Article  Google Scholar 

  • Bouzat JL, Paige KN, Lewin HA (1998) The ghost of genetic diversity past: historical DNA analysis of the greater prairie chicken. Am Nat 152:1–6

    Article  CAS  PubMed  Google Scholar 

  • Brzyski JR, Culley TM (2011) Genetic variation and clonal structure of the rare, riparian shrub Spiraea virginiana (Rosaceae). Conserv Genet 12:1323–1332

    Article  Google Scholar 

  • Chafin LG (2000) Field guide to the rare plant of Florida. Florida Natural Areas Inventory, Tallahassee

    Google Scholar 

  • Chapuis M-P, Estoup A (2007) Microsatellite null alleles and estimation of population differentiation. Mol Biol Evol 24:621–631

    Article  CAS  PubMed  Google Scholar 

  • Chybicki IJ, Burczyk J (2009) Simultaneous estimation of null alleles and inbreeding coefficients. J Hered 100:106–113

    Article  CAS  PubMed  Google Scholar 

  • Contu S (2012a) Lupinus westianus. IUCN Red List of Threatened Species 2012. http://dx.doi.org/10.2305/IUCN.UK.2012.RLTS.T19891535A20101361.en. Accessed 12 Nov 2015

  • Contu S (2012b) Lupinus diffusus. The IUCN Red List of Threatened Species 2012. http://dx.doi.org/10.2305/IUCN.UK.2012.RLTS.T19891469A20097887.en. Accessed 12 Aug 2016

  • Corbet SA, Williams IH, Osborne JL (1991) Bees and the pollination of crops and wild flowers in the European Community. Bee World 72:47–59

    Article  Google Scholar 

  • Crisp PN, Dickinson KJM, Gibbs GW (1998) Does native invertebrate diversity reflect native plant diversity? A case study from New Zealand and implications for conservation. Biol Conserv 83:209–220

    Article  Google Scholar 

  • David P, Pujol B, Viard F, Castella V, Goudet J (2007) Reliable selfing rate estimates from imperfect population genetic data. Mol Ecol 16:2474–2487

    Article  CAS  PubMed  Google Scholar 

  • Dixo M, Metzger JP, Morgante JS, Zamudio KR (2009) Habitat fragmentation reduces genetic diversity and connectivity among toad populations in the Brazilian Atlantic Coastal Forest. Biol Conserv 142:1560–1569

    Article  Google Scholar 

  • Dudash M, Fenster C (2000) Inbreeding and outbreeding depression in fragmented populations. In: Young AG, Clarke GM (eds) Genetics, demography and viability of fragmented populations. Cambridge University Press, Cambridge, pp 35–53

    Chapter  Google Scholar 

  • Eckert C, Samis K, Dart S (2006) Reproductive assurance and the evolution of uniparental reproduction in flowering plants. In: Harder L, Barrett S (eds) Ecology and evolution of flowers. Oxford University Press, Oxford, pp 183–200

    Google Scholar 

  • Edmands S (2007) Between a rock and hard place: evaluating the relative risks of inbreeding and outbreeding depression for conservation management. Mol Ecol 16:463–475

    Article  PubMed  Google Scholar 

  • Ellstrand NC, Elam DR (1993) Population genetic consequences of small population size: implications for plant conservation. Ann Rev Ecol Syst 24:217–242

    Article  Google Scholar 

  • Erickson DL, Fenster CB (2006) Intraspecific hybridization and the recovery of fitness in the native legume Chamaecrista fasciculata. Evolution 60:225–233

    Article  PubMed  Google Scholar 

  • Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Res 10:564–567

    Article  Google Scholar 

  • Falk DA (1992) From conservation biology to conservation practice: strategies for protecting plant diversity. In: Fiedler PL, Jain SK (eds) Conservation biology: the theory and practice of nature conservation, preservation and management. Chapman and Hall, New York, pp 397–431

    Chapter  Google Scholar 

  • Falk DA, Holsinger KE (1991) Genetics and conservation of rare plants. Oxford University Press, New York

    Google Scholar 

  • Florida Fish and Wildlife Conservation Commission (FWCC) (2005) Florida’s wildlife legacy initiative. Florida’s comprehensive wildlife conservation strategy, Tallahassee

    Google Scholar 

  • Florida Natural Areas Inventory (FNAI) (2000) Lupinus westianus var. aridorum. http://www.fnai.org/FieldGuide/pdf/Lupinus_aridorum.pdf. Accessed 4 Jan 2016

  • Frankham R, Ballou J, Briscoe DA (2009) Introduction to conservation genetics. Cambridge University Press, Cambridge

    Google Scholar 

  • Frankham R, Ballou J, Eldridge M, Lacy R, Ralls K, Dudash M, Fenster C (2011) Predicting the probability of outbreeding depression. Conserv Biol 25:465–475

    Article  PubMed  Google Scholar 

  • Gao H, Williamson S, Bustamante CD (2007) A Markov chain Monte Carlo approach for joint inference of population structure and inbreeding rates from multilocus genotype data. Genetics 176:1635–1651

    Article  PubMed  PubMed Central  Google Scholar 

  • Glaubitz JC (2004) Convert: a user-friendly program to reformat diploid genotypic data for commonly used population genetic software packages. Mol Ecol Notes 4(2):309–310

    Article  CAS  Google Scholar 

  • Goldstein DB, Schlotterer C (1999) Microsatellites: evolution and applications. Oxford University Press, Oxford

    Google Scholar 

  • Goudet J (2001) Fstat, a program to estimate and test gene diversities and fixation indices (Version 2.9.3). http://www.unil.ch/izea/softwares/fstat.htm. Accessed 4 Jan 2016

  • Hamrick JL, Godt MJW, Murawski DA, Loveless MD (1991) Correlations between species traits and allozyme diversity: implications for conservation biology. In: Falk DA, Holsinger KE (eds) Genetics and conservation of rare plants. Oxford University Press, New York, pp 75–86

    Google Scholar 

  • Heard TA (1994) Behaviour and pollinator efficiency of stingless bees and honey bees on macadamia flowers. J Apic Res 33:191–198

    Article  Google Scholar 

  • Honnay O, Adriaens D, Coart E, Jacquemyn H, Roldan-Ruiz I (2007) Genetic diversity within and between remnant populations of the endangered calcareous grassland plant Globularia bisnagarica L. Conserv Genet 8:293–303

    Article  Google Scholar 

  • Honnay O, Bossuyt B, Jacquemyn H, Shimono A, Uchiyama K (2008) Can a seed bank maintain the genetic variation in the above ground plant population? Oikos 117:1–5

    Article  Google Scholar 

  • Horovitz A, Harding J (1983) Genetics of Lupinus. XII. The mating system of Lupinus pilosus. Bot Gaz 1983:276–279

    Article  Google Scholar 

  • Isely D (1986) Notes on Leguminosae: papilionoideae of the southeastern United States. Brittonia 38:352–359

    Article  Google Scholar 

  • Jarne P, David P (2008) Quantifying inbreeding in natural populations of hermaphroditic organisms. Heredity 100:431–439

    Article  CAS  PubMed  Google Scholar 

  • Kittelson PM, Maron JL (2000) Outcrossing rate and inbreeding depression in the perennial yellow bush lupine, Lupinus arboreus (Fabaceae). Am J Bot 87:652–660

    Article  CAS  PubMed  Google Scholar 

  • Klein A-M, Steffan-Dewenter I, Tscharntke T (2003) Fruit set of highland coffee increases with the diversity of pollinating bees. Proc R Soc B 270:955–961

    Article  PubMed  PubMed Central  Google Scholar 

  • Kremen C, Williams NM, Thorp RW (2002) Crop pollination from native bees at risk from agricultural intensification. Proc Natl Acad Sci USA 99:16812–16816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leinonen PH, Remington DL, Savolainen O (2011) Local adaptation, phenotypic differentiation, and hybrid fitness in diverged natural populations of Arabidopsis lyrata. Evolution 65:90–107

    Article  PubMed  Google Scholar 

  • Loh YH, Bezault E, Muenzel FM, Roberts RB, Swofford R, Barluenga M, Kidd CE, Howe AE, Di Palma F, Lindblad-Toh K, Hey J (2013) Origins of shared genetic variation in African cichlids. Mol Biol Evol 30:906–917

    Article  CAS  PubMed  Google Scholar 

  • McKinney ML (2002) Urbanization, biodiversity, and conservation: the impacts of urbanization on native species are poorly studied, but educating a highly urbanized human population about these impacts can greatly improve species conservation in all ecosystems. Bioscience 52:883–890

    Article  Google Scholar 

  • Mimura M, Aitken SN (2007) Increased selfing and decreased effective pollen donor number in peripheral relative to central populations in Picea sitchensis (Pinaceae). Am J Bot 94:991–998

    Article  PubMed  Google Scholar 

  • Paetkau D, Slade R, Burden M, Estoup A (2004) Genetic assignment methods for the direct, real-time estimation of migration rate: a simulation-based exploration of accuracy and power. Mol Ecol 13:55–65

    Article  CAS  PubMed  Google Scholar 

  • Palmer T (2006) Notes on the life and work of James Brigham McFarlin, Florida Botanist. SIDA Contrib Bot 22:607–613

    Google Scholar 

  • Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Peterson CL (2016) An integrated Conservation Program for the protection of the rare plant species of Florida: north and central region. Final Report to the state of Florida Department of Agriculture and Consumer Services, contract #22645

  • Peterson CL, Bupp G, Rynear J (2012) An integrated Conservation Program for the protection of the rare plant species of Florida: north and central region. Final Report to the state of Florida Department of Agriculture and Consumer Services, contract #17165

  • Piry S, Alapetite A, Cornuet JM, Paetkau D, Baudouin L, Estoup A (2004) GENECLASS2: a software for genetic assignment and first-generation migrant detection. J Hered 95:536–539

    Article  CAS  PubMed  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rannala B, Mountain JL (1997) Detecting immigration by using multilocus genotypes. Proc Natl Acad Sci USA 94:9197–9201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richards AJ (1997) Plant breeding systems, 2nd edn. Chapman and Hall, New York

    Book  Google Scholar 

  • Richardson ML, Keathley CP, Peterson CL (2016) Breeding system of the critically endangered Lakela’s Mint and influence of plant height on pollinators and seed output. Popul Ecol 58:277–284

    Article  Google Scholar 

  • Ricono A, Bupp G, Peterson C, Nunziata SO, Lance SL, Pruett CL (2015) Development and characterization of microsatellite loci for the endangered scrub lupine. Appl Plant Sci, Lupinus aridorum (Fabaceae). doi:10.3732/apps.1500013

    Google Scholar 

  • Rieseberg LH (1991) Hybridization in rare plants: insights from case studies in Cercocarpus and Helianthus. In: Falk DA, Holsinger KE (eds) Genetics and conservation of rare plants. Oxford University Press, New York, pp 171–181

    Google Scholar 

  • Rosenberg Noah A (2004) DISTRUCT: a program for the graphical display of population structure. Mol Ecol Notes 4(1):137–138

    Article  Google Scholar 

  • Selkoe KA, Toonen RJ (2006) Microsatellites for ecologists: a practical guide to using and evaluating microsatellite markers. Ecol Lett 9:615–629

    Article  PubMed  Google Scholar 

  • Sokal RR, Rohlf FJ (1995) Biometry, 3rd edn. WH Freeman Co, New York

    Google Scholar 

  • Templeton AR (1986) Coadaptation and outbreeding depression. Soule ME [ed] Conservation biology: the science of scarcity and diversity. Sinauer, Sunderland, pp 105–116

    Google Scholar 

  • Thornhill NW (1993) The natural history of inbreeding and outbreeding: theoretical and empirical perspectives. University of Chicago Press, Chicago

    Google Scholar 

  • U.S. Fish and Wildlife Service (USFWS) (1987) Endangered and threatened wildlife and plants; proposed endangered status for Lupinus aridorum (Scrub Lupine). Fed Reg 52:11172–11175

    Google Scholar 

  • U.S. Fish and Wildlife Service (USFWS) (1999). Scrub lupine recovery action plan. https://www.fws.gov/verobeach/MSRPPDFs/ScrubLupine.PDF. Accessed 25 Mar 2016

  • Van Oosterhout C, Hutchinson WF, Wills DP, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538

    Article  Google Scholar 

  • Vitalis R, Couvet D (2001) Two-locus identity probabilities and identity disequilibrium in a partially selfing subdivided population. Genet Res 77:67–81

    Article  CAS  PubMed  Google Scholar 

  • Waser NM (1993) Population structure, optimal outbreeding, and assortative mating in angiosperms. In: Thornhill NW (ed) The Natural history of inbreeding and outbreeding: theoretical and empirical perspectives. University of Chicago Press, Chicago, pp 173–199

    Google Scholar 

  • Weir BS, Cockerham CC (1973) Mixed self and random mating at two loci. Genet Res 21:247–262

    Article  CAS  PubMed  Google Scholar 

  • White WA (1970) The geomorphology of the Florida peninsula. Geological Bulletin 51, Bureau of Geology. Florida Department of Natural Resources, Tallahassee

  • Willi Y, Van Kleunen M, Dietrich S, Fischer M (2007) Genetic rescue persists beyond first-generation outbreeding in small populations of a rare plant. Proc R Soc London B 274:2357–2364

    Article  Google Scholar 

  • Wright S (1931) Evolution in mendelian populations. Genetics 16:97–159

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wright SI, Kalisz S, Slotte T (2013) Evolutionary consequences of self-fertilization in plants. Proc R Soc B 280:20130133

    Article  PubMed  PubMed Central  Google Scholar 

  • Wunderlin RP, Hansen BF (2008) Atlas of Florida vascular plants. http://florida.plantatlas.usf.edu/. Accessed 25 Mar 2016

Download references

Acknowledgments

The work upon which this manuscript is based was funded, in whole or in part, through a subrecipient grant awarded by the United States Fish and Wildlife Service (Agreement F09AP047, 017955; Federal Fish and Wildlife Permit TE237535-1) through the Florida Department of Agriculture and Consumer Services (Agreements: 018698, 020160, and 021009). The contents do not necessarily reflect the views or policies of the United States Fish and Wildlife Service nor does mention of trade names, commercial productions, services or organizations imply endorsement by the U.S. Government. This work was also supported by Florida Institute of Technology. We thank the following landowners for allowing us to collect on their properties: City of Orlando, Orange County, Evansville Western Railway, Inc., Florida Fish and Wildlife Conservation Commission, U.S. Fish and Wildlife Service, Florida Forest Service, Kerina Parkside LLC, Orange County Public Schools, and Pines of Wekiva Homeowners Association. Additional support and assistance was provided by L. Bates, T. Mecklenborg, M. Jenkins, B. Booth, M. Boothe, J. Stout, R. Fox, B. Gerard, J Rahill, Q. Richardson, and Breedlove, Dennis, & Associates, Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christin L. Pruett.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 194 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bupp, G., Ricono, A., Peterson, C.L. et al. Conservation implications of small population size and habitat fragmentation in an endangered lupine. Conserv Genet 18, 77–88 (2017). https://doi.org/10.1007/s10592-016-0883-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-016-0883-9

Keywords

Navigation