Conservation Genetics

, Volume 17, Issue 6, pp 1333–1344 | Cite as

Genomic diversity and geographical structure of the Pyrenean desman

  • Marina Querejeta
  • Jorge González-Esteban
  • Asunción Gómez
  • Angel Fernández-González
  • Pere Aymerich
  • Joaquim Gosálbez
  • Lídia Escoda
  • Javier Igea
  • Jose CastresanaEmail author
Research Article


The Pyrenean desman (Galemys pyrenaicus) is a small semi-aquatic mammal endemic to the Iberian Peninsula. The species has recently experienced a strong decline and some of its populations are severely threatened with extinction. To help in the preservation of this species, it is critical to understand its genetic structure and main evolutionary units, as these may have specific local adaptations and could be of great conservation value. Sequencing reduced representation libraries (ddRAD) from 26 specimens selected from across its entire range, we obtained around 45,000 loci per specimen and 1185 single nucleotide polymorphisms. Heterozygosity varied substantially among individuals from different areas. Interestingly, specimens from the southeastern Pyrenees had some of the lowest proportions of heterozygous positions inferred from genome-wide data in mammals so far. In addition, we estimated a tree reflecting genomic divergence, performed a principal component analysis, and carried out a Bayesian analysis of the population structure. Combined evidence supported the existence of five distinct genomic clusters largely coincident with the main mountain ranges where the species occurs, with few specimens presenting relevant admixture levels. There was good correspondence between these populations and the mitochondrial lineages detected in a previous study, yet substantial differences in some areas demonstrate the importance of performing genomic analysis to reveal the whole population history. Although the analysis of further specimens is necessary to better characterize the distribution of the different evolutionary units, the distinctive geographical structure of this species revealed by the genomic data should be considered in future conservation plans.


Galemys pyrenaicus ddRAD SNPs Conservation genomics Genetic structure 



We thank the BTVS-ICNF collection (Banco de Tecidos de Vertebrados Selvagens—Instituto da Conservação da Natureza e das Florestas), Xunta de Galicia, Gobierno de Navarra, Diputación Foral de Gipuzkoa, Gobierno de La Rioja, Parque Nacional de Picos de Europa, Julio Gisbert and Rosa García-Perea (Proyecto Galemia) for Galemys pyrenaicus samples from their respective biological collections, and Henrique Carvalho, Carla Marisa Quaresma and Carlos P. Santos (Instituto da Conservação da Natureza e das Florestas) for their help with the access to the BTVS-ICNF collection. We also thank all the people of the Genomics Core Facility at the Pompeu Fabra University for help with the library preparation and sequencing. This work was financially supported by research Projects CGL2011-22640 and CGL2014-53968-P of the “Plan Nacional I + D+I del Ministerio de Economía y Competitividad” (Spain) to J.C. with contribution of project 014/2008 of the “Convocatoria de ayudas a proyectos de investigación en la Red de Parques Nacionales” (Spain) to J.G. M.Q. was supported by fellowship BES-2012-057135 of the Ministerio de Economía y Competitividad (Spain).

Supplementary material

10592_2016_865_MOESM1_ESM.pdf (1.8 mb)
Supplementary material 1 (PDF 1811 kb)


  1. Allendorf FW, Hohenlohe PA, Luikart G (2010) Genomics and the future of conservation genetics. Nat Rev Genet 11:697–709. doi: 10.1038/nrg2844 CrossRefPubMedGoogle Scholar
  2. Allendorf FW, Luikart G, Aitken SN (2013) Conservation and the genetics of populations, 2nd edn. Wiley, HobokenGoogle Scholar
  3. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucl Acids Res 25:3389–3402CrossRefPubMedPubMedCentralGoogle Scholar
  4. Aymerich P, Gosálbez J (2014) El desmán ibérico Galemys pyrenaicus (É. Geoffroy Saint-Hilaire, 1811) en los Pirineos meridionales. In: Conservation and Management of semi-aquatic mammals of South-western Europe. Munibe Monographs. Nature Series 3. Aranzadi Society of Sciences, San Sebastian, pp 37–77Google Scholar
  5. Aymerich P, Casadesús F, Gosálbez J (2001) Distribució de Galemys pyrenaicus (Insectivora, Talpidae) a Catalunya. Orsis 16:93–110Google Scholar
  6. Buerkle CA, Gompert Z (2013) Population genomics based on low coverage sequencing: how low should we go? Mol Ecol 22:3028–3035. doi: 10.1111/mec.12105 CrossRefGoogle Scholar
  7. Catchen JM, Amores A, Hohenlohe P, Cresko W, Postlethwait JH (2011) Stacks: building and genotyping loci de novo from short-read sequences. Genes Genom Genet 1:171–182. doi: 10.1534/g3.111.000240 Google Scholar
  8. Catchen JM, Hohenlohe PA, Bassham S, Amores A, Cresko WA (2013) Stacks: an analysis tool set for population genomics. Mol Ecol 22:3124–3140. doi: 10.1111/mec.12354 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Charbonnel A (2015) Influence multi-échelle des facteurs environnementaux dans la répartition du Desman des Pyrénées (Galemys pyrenaicus) en France. Dissertation, Université de ToulouseGoogle Scholar
  10. Cho YS, Hu L, Hou H et al (2013) The tiger genome and comparative analysis with lion and snow leopard genomes. Nat Commun 4:2433. doi: 10.1038/ncomms3433 PubMedPubMedCentralGoogle Scholar
  11. Crandall KA, Bininda-Emonds ORP, Mace G, Wayne RK (2000) Considering evolutionary processes in conservation biology. Trends Ecol Evol 15:290–295CrossRefPubMedGoogle Scholar
  12. Dobrynin P, Liu S, Tamazian G et al (2015) Genomic legacy of the African cheetah, Acinonyx jubatus. Genome Biol 16:277. doi: 10.1186/s13059-015-0837-4 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620. doi: 10.1111/j.1365-294X.2005.02553.x CrossRefPubMedGoogle Scholar
  14. Felsenstein J (1989) PHYLIP-phylogeny inference package (version 3.4). Cladistics 5:164–166Google Scholar
  15. Fernandes M, Herrero J, Aulagnier S, Amori G (2011) Galemys pyrenaicus. IUCN Red List of Threatened Species Version 20112 1–3Google Scholar
  16. Freedman AH, Gronau I, Schweizer RM et al (2014) Genome sequencing highlights the dynamic early history of dogs. PLoS Genet 10:e1004016. doi: 10.1371/journal.pgen.1004016 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Funk WC, Mckay JK, Hohenlohe PA, Allendorf FW (2012) Harnessing genomics for delineating conservation units. Trends Ecol Evol 27:489–496. doi: 10.1016/j.tree.2012.05.012 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Gillet F (2015) Génétique et biologie de la conservation du desman des Pyrénées (Galemys pyrenaicus) en France. Dissertation, Université de LiègeGoogle Scholar
  19. Gisbert J, Garcia-Perea R (2014) Historia de la regresión del desmán ibérico Galemys pyrenaicus (É. Geoffroy Saint-Hilaire, 1811) en el Sistema Central (Península Ibérica). In: Conservation and Management of semi-aquatic mammals of South-western Europe. Munibe Monographs. Nature Series 3. Aranzadi Society of Sciences, San Sebastian, pp 19–35Google Scholar
  20. Godinho R, Crespo EG, Ferrand N (2008) The limits of mtDNA phylogeography: complex patterns of population history in a highly structured Iberian lizard are only revealed by the use of nuclear markers. Mol Ecol 17:4670–4683. doi: 10.1111/j.1365-294X.2008.03929.x CrossRefPubMedGoogle Scholar
  21. Gomez A, Lunt DH (2007) Refugia within refugia: patterns of phylogeographic concordance in the Iberian Peninsula. Phylogeography of Southern European Refugia, pp 155–188Google Scholar
  22. González-Esteban J, Castién E, Gosálbez J (1999) Morphological and colour variation in the pyrenean desman galemys pyrenaicus (Geoffroy, 1811). Z Säugetierkunde 64:1–11Google Scholar
  23. Green RE, Briggs AW, Krause J, Prüfer K, Burbano HA, Siebauer M, Lachmann M, Pääbo S (2009) The Neandertal genome and ancient DNA authenticity. EMBO J 28:2494–2502. doi: 10.1038/emboj.2009.222 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Gronau I, Hubisz MJ, Gulko B, Danko CG, Siepel A (2011) Bayesian inference of ancient human demography from individual genome sequences. Nat Genet 43:1031–1034. doi: 10.1038/ng.937 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Hewitt GM (2000) The genetic legacy of the Quaternary ice ages. Nature 405:907–913. doi: 10.1038/35016000 CrossRefPubMedGoogle Scholar
  26. Huson DH, Bryant D (2006) Application of phylogenetic networks in evolutionary studies. Mol Biol Evol 23:254–267. doi: 10.1093/molbev/msj030 CrossRefPubMedGoogle Scholar
  27. Igea J, Aymerich P, Fernández-González A, González-Esteban J, Gómez A, Alonso R, Gosálbez J, Castresana J (2013) Phylogeography and postglacial expansion of the endangered semi-aquatic mammal Galemys pyrenaicus. BMC Evol Biol 13:115. doi: 10.1186/1471-2148-13-115 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Igea J, Aymerich P, Bannikova AA, Gosálbez J, Castresana J (2015) Multilocus species trees and species delimitation in a temporal context: application to the water shrews of the genus Neomys. BMC Evol Biol 15:209. doi: 10.1186/s12862-015-0485-z CrossRefPubMedPubMedCentralGoogle Scholar
  29. Irwin DE (2002) Phylogeographic breaks without geographic barriers to gene flow. Evolution 56:2383–2394CrossRefPubMedGoogle Scholar
  30. Kjeldsen SR, Zenger KR, Leigh K, Ellis W, Tobey J, Phalen D, Melzer A, FitzGibbon S, Raadsma HW (2015) Genome-wide SNP loci reveal novel insights into koala (Phascolarctos cinereus) population variability across its range. Conserv Genet 17:337–353. doi: 10.1007/s10592-015-0784-3 CrossRefGoogle Scholar
  31. Lanier HC, Massatti R, He Q, Olson LE, Knowles LL (2015) Colonization from divergent ancestors: glaciation signatures on contemporary patterns of genomic variation in Collared Pikas (Ochotona collaris). Mol Ecol 24:3688–3705. doi: 10.1111/mec.13270 CrossRefPubMedGoogle Scholar
  32. Li R, Fan W, Tian G et al (2010) The sequence and de novo assembly of the giant panda genome. Nature 463:311–317. doi: 10.1038/nature08696 CrossRefPubMedGoogle Scholar
  33. Lopez-Fuster MJ, Garcia-Perea R, Fernández-Salvador R, Gisbert J, Ventura J (2006) Craniometric variability of the Iberian desman, Galemys pyrenaicus (Mammalia: Erinaceomorpha: Talpidae). Folia Zool 55:29–42Google Scholar
  34. Lynch M (1991) The genetic interpretation of inbreeding depression and outbreeding depression. Evolution 45:622–629CrossRefGoogle Scholar
  35. Melero Y, Aymerich P, Luque-Larena JJ, Gosálbez J (2012) New insights into social and space use behaviour of the endangered Pyrenean desman (Galemys pyrenaicus). Eur J Wildl Res 58:185–193. doi: 10.1007/s10344-011-0561-7 CrossRefGoogle Scholar
  36. Morin PA, Martien KK, Taylor BL (2009) Assessing statistical power of SNPs for population structure and conservation studies. Mol Ecol Resour 9:66–73. doi: 10.1111/j.1755-0998.2008.02392.x CrossRefPubMedGoogle Scholar
  37. Nater A, Nietlisbach P, Arora N, van Schaik CP, van Noordwijk MA, Willems EP, Singleton I, Wich SA, Goossens B, Warren KS, Verschoor EJ, Perwitasari-Farajallah D, Pamungkas J, Krützen M (2011) Sex-biased dispersal and volcanic activities shaped phylogeographic patterns of extant Orangutans (genus: Pongo). Mol Biol Evol 28:2275–2288. doi: 10.1093/molbev/msr042 CrossRefPubMedGoogle Scholar
  38. Nores C, Queiroz AI, Gisbert J (2007) Galemys pyrenaicus. Atlas y libro rojo de los mamíferos terrestres de España, pp 92–98Google Scholar
  39. Orsini L, Vanoverbeke J, Swillen I, Mergeay J, De Meester L (2013) Drivers of population genetic differentiation in the wild: isolation by dispersal limitation, isolation by adaptation and isolation by colonization. Mol Ecol 22:5983–5999. doi: 10.1111/mec.12561 CrossRefPubMedGoogle Scholar
  40. Ouborg NJ, Pertoldi C, Loeschcke V, Bijlsma RK, Hedrick PW (2010) Conservation genetics in transition to conservation genomics. Trends Genet 26:177–187. doi: 10.1016/j.tig.2010.01.001 CrossRefPubMedGoogle Scholar
  41. Palmeirim JM, Hoffmann RS (1983) Galemys pyrenaicus. Mamm Species 207:1–5CrossRefGoogle Scholar
  42. Peterson BK, Weber JN, Kay EH, Fisher HS, Hoekstra HE (2012) Double digest RADseq: an inexpensive method for de novo SNP discovery and genotyping in model and non-model species. PLoS One 7:e37135. doi: 10.1371/journal.pone.0037135 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Prado-Martinez J, Sudmant PH, Kidd JM et al (2013) Great ape genetic diversity and population history. Nature 499:471–475. doi: 10.1038/nature12228 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedPubMedCentralGoogle Scholar
  45. Robinson JA, Ortega-Del Vecchyo D, Fan Z, Kim BY, Vonholdt BM, Marsden CD, Lohmueller KE, Wayne RK (2016) Genomic flatlining in the endangered Island Fox. Curr Biol 26:1183–1189. doi: 10.1016/j.cub.2016.02.062 CrossRefPubMedGoogle Scholar
  46. Shafer ABA, Wolf JBW, Alves PC et al (2015) Genomics and the challenging translation into conservation practice. Trends Ecol Evol 30:78–87. doi: 10.1016/j.tree.2014.11.009 CrossRefPubMedGoogle Scholar
  47. Sovic MG, Fries AC, Gibbs HL (2015) AftrRAD: a pipeline for accurate and efficient de novo assembly of RADseq data. Mol Ecol Resour 15:1163–1171. doi: 10.1111/1755-0998.12378 CrossRefPubMedGoogle Scholar
  48. Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690. doi: 10.1093/bioinformatics/btl446 CrossRefPubMedGoogle Scholar
  49. Steiner CC, Putnam AS, Hoeck PEA, Ryder OA (2013) Conservation genomics of threatened animal species. Annu Rev Anim Biosci 1:261–281. doi: 10.1146/annurev-animal-031412-103636 CrossRefPubMedGoogle Scholar
  50. Tallmon DA, Luikart G, Waples RS (2004) The alluring simplicity and complex reality of genetic rescue. Trends Ecol Evol 19:489–496. doi: 10.1016/j.tree.2004.07.003 CrossRefPubMedGoogle Scholar
  51. Toews DPL, Brelsford A (2012) The biogeography of mitochondrial and nuclear discordance in animals. Mol Ecol 21:3907–3930. doi: 10.1111/j.1365-294X.2012.05664.x CrossRefPubMedGoogle Scholar
  52. Vonholdt BM, Pollinger JP, Earl DA, Knowles JC, Boyko AR, Parker H, Geffen E, Pilot M, Jedrzejewski W, Jedrzejewska B, Sidorovich V, Greco C, Randi E, Musiani M, Kays R, Bustamante CD, Ostrander EA, Novembre J, Wayne RK (2011) A genome-wide perspective on the evolutionary history of enigmatic wolf-like canids. Genome Res 21:1294–1305. doi: 10.1101/gr.116301.110 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Xue Y, Prado-Martinez J, Sudmant PH, Narasimhan V, Ayub Q, Szpak M, Frandsen P, Chen Y, Yngvadottir B, Cooper DN, de Manuel M, Hernandez-Rodriguez J, Lobon I, Siegismund HR, Pagani L, Quail MA, Hvilsom C, Mudakikwa A, Eichler EE, Cranfield MR, Marques-Bonet T, Tyler-Smith C, Scally A (2015) Mountain gorilla genomes reveal the impact of long-term population decline and inbreeding. Science 348:242–245. doi: 10.1126/science.aaa3952 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Zheng X, Levine D, Shen J, Gogarten SM, Laurie C, Weir BS (2012) A high-performance computing toolset for relatedness and principal component analysis of SNP data. Bioinformatics 28:3326–3328. doi: 10.1093/bioinformatics/bts606 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Marina Querejeta
    • 1
  • Jorge González-Esteban
    • 2
  • Asunción Gómez
    • 3
  • Angel Fernández-González
    • 4
  • Pere Aymerich
    • 5
  • Joaquim Gosálbez
    • 5
  • Lídia Escoda
    • 1
  • Javier Igea
    • 1
    • 6
  • Jose Castresana
    • 1
    Email author
  1. 1.Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra)BarcelonaSpain
  2. 2.Desma Estudios Ambientales S.LSunbillaSpain
  3. 3.Tragsatec, Área de BiodiversidadMadridSpain
  4. 4.Biosfera Consultoría Medioambiental S.LOviedoSpain
  5. 5.Departament de Biologia AnimalUniversitat de BarcelonaBarcelonaSpain
  6. 6.Department of Plant SciencesUniversity of CambridgeCambridgeUK

Personalised recommendations