Skip to main content

Advertisement

Log in

Conserving the small milkwort, Comesperma polygaloides, a vulnerable subshrub in a fragmented landscape

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

The conservation of remnant grassland vegetation on the Victorian volcanic plain (VVP) is crucial for the persistence of local biodiversity. Recent habitat loss has restricted the grassland to only a small percentage of its former range. Along with grassland habitats, species that occur on the VVP are in decline and many are legally protected. Comesperma polygaloides is a grassland species of the VVP that also occurs outside of the region in woodland habitats. We use 12 neutral microsatellite loci and two chloroplast regions to understand genotypic patterns of C. polygaloides in southeastern Australia. We found separate genetic clusters but they do not follow geographic boundaries. There are fewer alleles (2.96) and effective alleles (2.01) than expected from 12 microsatellite markers compared to other species. Even with the low number of alleles per locus there was a moderate level of genetic diversity detected (I = 0.69; Ho = 0.43; He = 0.40). Populations of the VVP could not be differentiated from populations elsewhere using neutral markers or chloroplast analyses. The genetic structure discovered was not consistent with the level of fragmentation observed. There may be several reasons for the observed lack of genetic structure: the species is more common than perceived, plants are long-lived and can reproduce clonally, and the bioregion is relatively young, geologically. Results indicate that restoration projects and long-term viability of C. polygaloides will be improved by composite seed sourcing, alleviating the risk of insufficient genetic diversity posed by an over-emphasis on local provenancing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aguilar R, Quesada M, Ashworth L, Herrerias-Diego Y, Lobo J (2008) Genetic consequences of habitat fragmentation in plant populations: susceptible signals in plant traits and methodological approaches. Mol Ecol 17:5177–5188

    Article  PubMed  Google Scholar 

  • Ahrens CW, James EA (2014) Isolation and characterization of 12 microsatellite markers for the vulnerable subshrub Comesperma polygaloides (Polygalaceae). Conserv Genet Resour. doi:10.1007/s12686-014-0258-9

    Google Scholar 

  • Ahrens CW, James EA (2015) Range-wide genetic analysis reveals limited structure and suggests asexual patterns in the rare forb Senecio macrocarpus. Biol J Linn Soc 115:256–269

    Article  Google Scholar 

  • Ahrens CW, James EA (2016) Regional genetic structure and environmental variables influence our conservation approach for feather-heads (Ptilotus macrocephalus). J Hered. doi:10.1093/jhered/esw009

    PubMed  Google Scholar 

  • Allendorf FW, Luikart GH, Aitken SN (2013) Conservation and the genetics of populations. Wiley, Chichester

    Google Scholar 

  • Barlow TJ, Ross JR (2001) Vegetation of the Victorian volcanic plain. Proc R Soc Victoria 113:25–28

    Google Scholar 

  • Bellard C, Bertelsmeier C, Leadley P, Thuiller W, Courchamp F (2012) Impacts of climate change on the future of biodiversity. Ecol Lett 15:365–377

    Article  PubMed  PubMed Central  Google Scholar 

  • Bond WJ, Parr CL (2010) Beyond the forest edge: ecology, diversity and conservation of the grassy biomes. Biol Conserv 143:2395–2404

    Article  Google Scholar 

  • Bonin A, Bellemain E, Bronken Eidesen P, Pompanon F, Brochmann C, Taberlet P (2004) How to track and assess genotyping errors in population genetics studies. Mol Ecol 13:3261–3273

    Article  CAS  PubMed  Google Scholar 

  • Breed MF, Stead MG, Ottewell KM, Gardner MG, Lowe AJ (2012) Which provenance and where? Seed sourcing strategies for revegetation in a changing environment. Conserv Genet 14:1–10

    Article  Google Scholar 

  • Broadhurst LM, Lowe A, Coates DJ, Cunningham SA, McDonald M, Vesk PA, Yates C (2008) Seed supply for broadscale restoration: maximizing evolutionary potential. Evol Appl 1:587–597

    PubMed  PubMed Central  Google Scholar 

  • Chandler GT, Bayer RJ (2000) Phylogenetic placement of the enigmatic Western Australian genus Emblingia based on rbcL sequences. Plant Species Biol 15:67–72

    Article  Google Scholar 

  • Clark SG (2009) An informational approach to sustainability: “intelligence” in conservation and natural resource management policy. J Sustain For 28:636–662

    Article  Google Scholar 

  • Crawford NG (2010) smogd: software for the measurement of genetic diversity. Mol Ecol Resour 10:556–557

    Article  PubMed  Google Scholar 

  • Dahlhaus P, Cox J, MacEwan R, Codd P (2003) Victorian volcanic plains scoping study. CSIRO, Canberra

    Google Scholar 

  • Diniz-Filho JAF, Soares TN, Lima JS et al (2013) Mantel test in population genetics. Genet Mol Biol 36:475–485

    Article  PubMed  PubMed Central  Google Scholar 

  • DoE (2011) Nationally threatened ecological communities of the Victorian Volcanic Plain: natural temperate grassland & grassy Eucalypt woodland. Department of the Environment, Canberra, pp 1–56

    Google Scholar 

  • DSE (2004) Action statement: small milkwort (Comesperma polygaloides). Department of Sustanability and Environment, Melbourne

    Google Scholar 

  • Earl DA, vonHoldt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361

    Article  Google Scholar 

  • Eckert CG, Dorken ME, Mitchell SA (1999) Loss of sex in clonal populations of a flowering plant, Decodon verticillatus (Lythraceae). Evolution 53:1079–1092

    Article  Google Scholar 

  • Ennos R, French G, Hollingsworth P (2005) Conserving taxonomic complexity. Trends Ecol Evol 20:164–168

    Article  PubMed  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Frankham R (2005) Genetics and extinction. Biol Conserv 126:131–140

    Article  Google Scholar 

  • Frankham R (2010) Challenges and opportunities of genetic approaches to biological conservation. Biol Conserv 143:1919–1927

    Article  Google Scholar 

  • Frankham R (2015) Genetic rescue of small inbred populations: meta-analysis reveals large and consistent benefits of gene flow. Mol Ecol 24:2610–2618

    Article  PubMed  Google Scholar 

  • Frankham R, Bradshaw CJA, Brook BW (2014) Genetics in conservation management: revised recommendations for the 50/500 rules, Red List criteria and population viability analyses. Biol Conserv 170:56–63

    Article  Google Scholar 

  • Garrard GE, Bekessy SA, McCarthy MA, Wintle BA (2014) Incorporating detectability of threatened species into environmental impact assessment. Conserv Biol 29:216–225

    Article  PubMed  Google Scholar 

  • Goudet J (1995) FSTAT (Version 1.2): a computer program to calculate F-statistics. J Hered 86:485–486

    Google Scholar 

  • Hendry AP, Kinnison MT, Heino M et al (2011) Evolutionary principles and their practical application. Evol Appl 4:159–183

    Article  PubMed  PubMed Central  Google Scholar 

  • Hoehn M, Dimond W, Osborne W, Sarre SD (2013) Genetic analysis reveals the costs of peri-urban development for the endangered grassland earless dragon. Conserv Genet 14:1269–1278

    Article  Google Scholar 

  • Hoffmann AA, Sgrò CM (2011) Climate change and evolutionary adaptation. Nature 470:479–485

    Article  CAS  PubMed  Google Scholar 

  • Hylander K, Ehrlén J (2013) The mechanisms causing extinction debts. Trends Ecol Evol 28:341–346

    Article  PubMed  Google Scholar 

  • Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23:1801–1806

    Article  CAS  PubMed  Google Scholar 

  • James EA, Jordan R (2014) Limited structure and widespread diversity suggest potential buffers to genetic erosion in a threatened grassland shrub Pimelea spinescens (Thymelaeaceae). Conserv Genet 15:305–317

    Article  Google Scholar 

  • Jombart T (2008) adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24:1403–1405

    Article  CAS  PubMed  Google Scholar 

  • Jost L (2008) GST and its relatives do not measure differentiation. Mol Ecol 17:4015–4026

    Article  PubMed  Google Scholar 

  • Joyce EB (2003) Western volcanic plains, Victoria. CRC LEME. www.crcleme.org.au/RegLandEval

  • McKay JK, Christian CE, Harrison S, Rice KJ (2005) “How local is local?”—a review of practical and conceptual issues in the genetics of restoration. Restor Ecol 13:432–440

    Article  Google Scholar 

  • Meek MH, Wells C, Tomalty KM et al (2015) Biological conservation. Biol Conserv 184:209–217

    Article  Google Scholar 

  • Meirmans PG, van Tienderen PH (2004) genotype and genodive: two programs for the analysis of genetic diversity of asexual organisms. Mol Ecol Notes 4:792–794

    Article  Google Scholar 

  • Mona S, Ray N, Arenas M, Excoffier L (2013) Genetic consequences of habitat fragmentation during a range expansion. Heredity 112:291–299

    Article  PubMed  PubMed Central  Google Scholar 

  • Naidoo R, Balmford A, Costanza R, Fisher B, Green RE, Lehner B, Malcolm TR, Ricketts TH (2008) Global mapping of ecosystem services and conservation priorities. Proc Natl Acad Sci USA 105:9495–9500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nei M, Tajima F, Tateno Y (1983) Accuracy of estimated phylogenetic trees from molecular data. II. Gene frequency data. J Mol Evol 19:153–170

    Article  CAS  PubMed  Google Scholar 

  • Piry S, Luikart G, Cornuet J-M (1999) BOTTLENECK: A program for detecting recent effective population size reductions from allele data frequencies. Montpelier, France. doi: 10.1093/deafed/ent049

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Prober SM, Byrne M, McLean EH, Steane DA, Potts BM, Vaillancourt RE, Stock WD (2015) Climate-adjusted provenancing: a strategy for climate-resilient ecological restoration. Front Ecol Evol 3:65. doi:10.3389/fevo.2015.00065

    Article  Google Scholar 

  • R Core Development Team (2015) R: a language and environment for statistical computing. Vienna, Austria: R foundation for Statistical Computing. http://www.R-project.org

  • Raymond M, Rousset F (1995) GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249

    Google Scholar 

  • Reich PB, Tilman D, Isbell F, Mueller K, Hobbie SE, Flynn DFB, Eisenhauer N (2012) Impacts of biodiversity loss escalate through time as redundancy fades. Science 336:589–592

    Article  CAS  PubMed  Google Scholar 

  • Rolland J, Cadotte MW, Davies J, Devictor V, Lavergne S, Mouquet N, Pavoine S et al (2012) Using phylogenies in conservation: new perspectives. Biol Lett 8:692–694

    Article  PubMed  Google Scholar 

  • Rosenberg NA (2004) DISTRUCT: a program for the graphical display of population structure. Mol Ecol Notes 4:137–138

    Article  Google Scholar 

  • Ross J, Lowe K, Moorees A, Ahern L (2002) A strategy for conserving biodiversity in the Victorian Volcanic Plain bioregion, Victoria, volume 1: overview. Catchment Management Authority, Melbourne

    Google Scholar 

  • Salzburger W, Ewing GB, Von Haeseler A (2011) The performance of phylogenetic algorithms in estimating haplotype genealogies with migration. Mol Ecol 20:1952–1963

    Article  PubMed  Google Scholar 

  • Severns PM, Liston A, Wilson MV (2011) Habitat fragmentation, genetic diversity, and inbreeding depression in a threatened grassland legume: is genetic rescue necessary? Conserv Genet 12:881–893

    Article  Google Scholar 

  • Taberlet P, Gielly L, Pautou G, Bouvet J (1991) Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Mol Biol 17:1105–1109

    Article  CAS  PubMed  Google Scholar 

  • Templeton AR (1998) Nested clade analyses of phylogeographic data: testing hypotheses about gene flow and population history. Mol Ecol 7:381–397

    Article  CAS  PubMed  Google Scholar 

  • van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) micro-checker: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538

    Article  Google Scholar 

  • Vilas A, Pérez-Figueroa A, Quesada H, Caballero A (2015) Allelic diversity for neutral markers retains a higher adaptive potential for quantitative traits than expected heterozygosity. Mol Ecol 24:4419–4432

    Article  PubMed  Google Scholar 

  • Walsh NG, Entwisle TJ (1999) Flora of Victoria. Volume 4: dicotyledons Cornaceae to Asteraceae. Inkata Press, Melbourne

    Google Scholar 

  • Whiteley AR, Fitzpatrick SW, Funk WC, Tallmon DA (2015) Genetic rescue to the rescue. Trends Ecol Evol 30:42–49

    Article  PubMed  Google Scholar 

  • Williams AV, Nevill PG, Krauss SL (2014) Next generation restoration genetics: applications and opportunities. Trends Plant Sci 19:529–537

    Article  CAS  PubMed  Google Scholar 

  • Williams N, Marshall A, Morgan J (2015) Land of sweeping plains. CSIRO Publishing, Canberra, p 472

    Google Scholar 

  • Young A, Boyle T, Brown T (1996) The population genetic consequences of habitat fragmentation for plants. Trends Ecol Evol 11:413–418

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the Royal Botanic Gardens Victoria; the study was funded by Hansons Construction Materials Pty Ltd. The authors also thank David Cantrill, Neville Walsh, Jeff Jeanes, and Ken Brown for their valuable input. We would also like to acknowledge constructive comments provided by the anonymous reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Collin W. Ahrens.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 659 kb)

Supplementary material 2 (DOCX 75 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahrens, C.W., James, E.A. Conserving the small milkwort, Comesperma polygaloides, a vulnerable subshrub in a fragmented landscape. Conserv Genet 17, 891–901 (2016). https://doi.org/10.1007/s10592-016-0830-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-016-0830-9

Keywords

Navigation