Conservation Genetics

, Volume 17, Issue 2, pp 401–412 | Cite as

Effects of a range expansion on adaptive and neutral genetic diversity in dispersal limited Hazel grouse (Bonasa bonasia) in the French Alps

  • Jani Rózsa
  • Tanja M. Strand
  • Marc Montadert
  • Radoslav Kozma
  • Jacob HöglundEmail author
Research Article


Biogeographic range expansions, when related to dispersal limitation, may have counter intuitive effects on genetic diversity. At range margins the relative roles of demographic changes, connectivity and genetic diversity need to be integrated for a successful assessment of population viability. Historically the Hazel grouse (Bonasa bonasia) in France was found in the north of the French Alps and also in a disjunct population in the nearby Jura Mountains. The species has recently undergone a range expansion in a north to south axis in the Alps. Local population size estimates and migration patterns during expansion have previously been studied. In this study, we performed genotyping at neutral (microsatellite) and adaptive (MHC) genetic markers in Hazel grouse. We compared diversity and differentiation (FST and DEST) at three sampling localities along the expansion axis in the French Alps and Jura, as well as at two sampling localities in Sweden, where the population has had a long-term continuous and stable distribution. Strong serial founder effects were found between the French localities, resulting in stronger isolation further south, with a relatively high neutral differentiation (pair-wise FST = 0.117). However, the loss of adaptive diversity MHC was slight. No adaptive differentiation (MHC DEST = −0.015) was observed, thus, the French localities can be considered uniform units with regard to MHC diversity, a criterion to treat populations in these localities as a management unit.


Adaptive genetic diversity MHC Microsatellites Migration Biogeography Range expansion Dispersal limitation 



We are grateful to several anonymous reviewers, Yvonne Meyer-Lucht, Eleanor Jones and other members of the Höglund research group for helpful discussions and comments on the manuscript. We also thank Robin Strand for calculating the binomial probability for MHC data, and Eleftheria Palkopoulou for assistance in the lab.


  1. Arguello JR, Little AM, Bohan E, Goldman JM, Marsh SGE, Madrigal JA (1998) High resolution HLA class I typing by reference strand mediated conformation analysis (RSCA). Tissue Antigens 52:57–66CrossRefPubMedGoogle Scholar
  2. Beerli P (2006) Comparison of Bayesian and maximum-likelihood inference of population genetic parameters. Bioinformatics 22:341–345CrossRefPubMedGoogle Scholar
  3. Burri R, Salamin N, Studer RA, Roulin A, Fumagalli L (2010) Adaptive divergence of ancient gene duplicates in the avian MHC class IIB. Mol Biol Evol 27:2360–2374CrossRefPubMedGoogle Scholar
  4. Canestrelli D, Aloise G, Cecchetti S, Nascetti G (2010) Birth of a hotspot of intraspecific genetic diversity: notes from the underground. Mol Ecol 19:5432–5451CrossRefPubMedGoogle Scholar
  5. Chaves LD, Faile GM, Krueth SB, Hendrickson JA, Reed KM (2010) Haplotype variation, recombination, and gene conversion within the turkey MHC-B locus. Immunogenetics 62:465–477CrossRefPubMedGoogle Scholar
  6. Chao A, Jost L, Chiang SC, Jiang YH, Chazdon R (2008) A two-stage probabilistic approach to multiple-community similarity indices. Biometrics 64:1178–1186CrossRefPubMedGoogle Scholar
  7. Cornuet JM, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144:2001–2014PubMedPubMedCentralGoogle Scholar
  8. Dewoody YD, Dewoody JA (2005) On the estimation of genome-wide heterozygosity using molecular markers. J Hered 96:85–88CrossRefPubMedGoogle Scholar
  9. Earl DA, von Holdt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361CrossRefGoogle Scholar
  10. Ekblom R, Sæther SA, Jacobsson P, Fiske P, Sahlman T, Grahn M, Kålås JA, Höglund J (2007) Spatial pattern of MHC class II variation in the great snipe (Gallinago media). Mol Ecol 16:1439–1451CrossRefPubMedGoogle Scholar
  11. Ekblom R, Sæther SA, Fiske P, Kålås JA, Höglund J (2010) Balancing selection, sexual selection and geographic structure in MHC genes of Great Snipe. Genetica 138:453–461CrossRefPubMedGoogle Scholar
  12. Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567CrossRefPubMedGoogle Scholar
  13. Excoffier L (2004) Patterns of DNA sequence diversity and genetic structure after a range expansion: lessons from the infinite-island model. Mol Ecol 13:853–864CrossRefPubMedGoogle Scholar
  14. Excoffier L, Foll M, Petit RJ (2009) Genetic consequences of range expansions. Annu Rev Ecol Evol Syst 40:481–501CrossRefGoogle Scholar
  15. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620CrossRefPubMedGoogle Scholar
  16. Frankham R (2003) Genetics and conservation biology. CR Biol 326:22–29CrossRefGoogle Scholar
  17. Frankham R, Ballou JD, Briscoe DA (2009) Introduction to conservation genetics. Cambridge University Press, CambridgeGoogle Scholar
  18. Goudet J (1995) FSTAT (Version 1.2): a computer program to calculate F-statistics. J Hered 86:485–486Google Scholar
  19. Hanski I (1991) Metapopulation dynamics: brief history and conceptual domain. Biol J Linn Soc 42:3–16CrossRefGoogle Scholar
  20. Holderegger R, Kamm K, Gugerli F (2006) Adaptive versus neutral genetic diversity: implications for landscape genetics. Landsc Ecol 21:797–807CrossRefGoogle Scholar
  21. Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23:1801–1806CrossRefPubMedGoogle Scholar
  22. Jombart T (2008) ADEGENET: a R package for the multivariate analysis of genetic markers. Bioinformatics 24:1403–1405CrossRefPubMedGoogle Scholar
  23. Jost L (2008) GST and its relatives do not measure differentiation. Mol Ecol 17:4015–4026CrossRefPubMedGoogle Scholar
  24. Lacy RC (1997) Importance of genetic variation to the viability of mammalian populations. J Mammal 78:320–335CrossRefGoogle Scholar
  25. Lowe WH, Allendorf FW (2010) What can genetics tell us about population connectivity? Mol Ecol 19:3038–3051CrossRefPubMedGoogle Scholar
  26. Meirmans PG, Hedrick PW (2011) Assessing population structure: FST and related measures. Mol Ecol Resour 11:5–18CrossRefPubMedGoogle Scholar
  27. Meyer-Lucht Y, Mulder KP, James MC, McMahon BJ, Buckley K, Piertney SB, Höglund J Adaptive and neutral genetic differentiation among Scottish and endangered Irish ted grouse (Lacopus lagopus scotica). Conservation Genetics (in press)Google Scholar
  28. Milinski M, Griffiths SW, Reusch TBH, Boehm T (2010) Costly major histocompatibility complex signals produced only by reproductively active males, but not females, must be validated by a ‘maleness signal’ in three-spined sticklebacks. Proc R Soc B 277:391–398CrossRefPubMedPubMedCentralGoogle Scholar
  29. Montadert M, Léonard P (2003) Survival in an expanding hazel grouse Bonasa bonasia population in the southeastern French Alps. Wildl Biol 9:357–364Google Scholar
  30. Montadert M, Léonard P (2006) Post-juvenile dispersal of Hazel Grouse Bonasa bonasia in an expanding population of the southeastern French Alps. Ibis 148:1–13CrossRefGoogle Scholar
  31. Moritz C (1994) Defining ‘Evolutionary Significant Units’ for conservation. TREE 9:373–375PubMedGoogle Scholar
  32. Nei M (1972) Genetic distance between populations. Am Nat 106:283–292CrossRefGoogle Scholar
  33. Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New YorkGoogle Scholar
  34. Newman D, Pilson D (1997) Increased probability of extinction due to decreased genetic effective population size: experimental populations of Clarkia pulchella. Evolution 51:354–362CrossRefGoogle Scholar
  35. Opdam P, Wascher D (2004) Climate change meets habitat fragmentation: linking landscape and biogeographical scale levels in research and conservation. Biol Conserv 117:285–297CrossRefGoogle Scholar
  36. Petit RJ, Aguinagalde I, Beaulieu JL, Bittkau C, Brewer S, Cheddadi R, Ennos R, Fineschi S, Grivet D, Lascoux M, Mohanty A, Müller-Starck G, Demesure-Musch B, Palmé A, Marti JP, Rendell S, Vendramin GG (2003) Glacial refugia: hotspots but not melting pots of genetic diversity. Science 300:1563–1565CrossRefPubMedGoogle Scholar
  37. Piertney SB, Oliver MK (2006) The evolutionary ecology of the major histocompatibility complex. Heredity 96:7–21PubMedGoogle Scholar
  38. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedPubMedCentralGoogle Scholar
  39. Ray N, Currat M, Excoffier L (2003) Intra-deme molecular diversity in spatially expanding populations. Mol Biol Evol 20:76–86CrossRefPubMedGoogle Scholar
  40. Raymond M, Rousset F (1995) GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249Google Scholar
  41. Reed DH, Frankham R (2003) Correlation between fitness and genetic diversity. Conserv Biol 17:230–237CrossRefGoogle Scholar
  42. Rosenberg NA (2004) DISTRUCT: a program for graphical display of population structure. Mol Ecol Notes 4:137–138CrossRefGoogle Scholar
  43. Rousset F (1997) Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145:1219–1228PubMedPubMedCentralGoogle Scholar
  44. Sahlsten J, Thörngren H, Höglund J (2008) Inference of hazel grouse population structure using multilocus data: a landscape genetic approach. Heredity 101:475–482CrossRefPubMedGoogle Scholar
  45. Seddon JM, Baverstock PR (1998) Variation on islands: major histocompatibility complex (Mhc) polymorphism in populations of the Australian bush rat. Mol Ecol 8:2071–2079CrossRefGoogle Scholar
  46. Segelbacher G, Paxton R, Steinbrueck G, Trontelj P, Storch I (2000) Characterisation of microsatellites in capercaillie (Tetrao urogallus) (AVES). Mol Ecol 9:1934–1935CrossRefPubMedGoogle Scholar
  47. Slatkin M (1995) A measure of population sub division based on microsatellite allele frequencies. Genetics 139:457–462PubMedPubMedCentralGoogle Scholar
  48. Sokal RR, Wartenberg DE (1983) A test of spatial autocorrelation analysis using an isolation-by-distance model. Genetics 105:219–237PubMedPubMedCentralGoogle Scholar
  49. Spielman D, Brook BW, Frankham R (2004) Most species are not driven to extinction before genetic factors impact them. PNAS 101:15261–15264CrossRefPubMedPubMedCentralGoogle Scholar
  50. Strand TM, Höglund J (2011) Genotyping of black grouse MHC class II B using reference Strand-Mediated Conformational Analysis (RSCA). BMC Research Notes 4:183CrossRefPubMedPubMedCentralGoogle Scholar
  51. Strand TM, Westerdahl H, Höglund J, Alatalo RV, Siitari H (2007) The Mhc class II of the Black grouse (Tetrao tetrix) consists of low numbers of B and Y genes with variable diversity and expression. Immunogenetics 59:725–734CrossRefPubMedGoogle Scholar
  52. Storch I (2000) Grouse status survey and conservation action plan 2000–2004. WPA/BirdLife/SSC Grouse Specialist Group, CambridgeGoogle Scholar
  53. Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) Micro-Checker: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538CrossRefGoogle Scholar
  54. Weir BS, Cockerham CC (1984) Estimating F-Statistics for the analysis of population structure. Evolution 38:1358–1370CrossRefGoogle Scholar
  55. Wilson GA, Rannala B (2003) Bayesian inference of recent migration rates using multilocus genotypes. Genetics 163:1177–1191PubMedPubMedCentralGoogle Scholar
  56. Willi Y, Van Buskirk J, Hoffmann AA (2006) Limits to the adaptive potential of small populations. Annu Rev Ecol Evol Syst 37:433–458CrossRefGoogle Scholar
  57. Wright S (1943) Isolation by distance. Genetics 28:114PubMedPubMedCentralGoogle Scholar
  58. Zegers G (2000) Genetic variability and resistance to infectious disease with particular emphasis on the major histocompatibility complex in the valley pocket gopher. Ph.D. thesis, University of California, Santa CruzGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Jani Rózsa
    • 1
  • Tanja M. Strand
    • 1
    • 3
  • Marc Montadert
    • 2
  • Radoslav Kozma
    • 1
  • Jacob Höglund
    • 1
    Email author
  1. 1.Department of Ecology and Genetics, Evolutionary Biology CentreUppsala UniversityUppsalaSweden
  2. 2.Laboratoire d’Ecologie et d’Ecophysiologie, EA 3184 MRT, UC INRAUniversité Franche-ComtéBesançonFrance
  3. 3.Department of Medical Biochemistry and MicrobiologyUppsala UniversityUppsalaSweden

Personalised recommendations