Skip to main content

Landscape genetics of a tropical rescue pollinator

Abstract

Pollination services are increasingly threatened by the loss and modification of natural habitats, posing a risk to the maintenance of both native plant biodiversity and agricultural production. In order to safeguard pollination services, it is essential to examine the impacts of habitat degradation on the population dynamics of key pollinators and identify potential “rescue pollinators” capable of persisting in these human-altered landscapes. Using a landscape genetic approach, we assessed the impact of landscape structure on genetic differentiation in the widely-distributed tropical stingless bee Trigona spinipes (Apidae: Meliponini) across agricultural landscape mosaics composed of coffee plantations and Atlantic forest fragments in southeastern Brazil. We genotyped 115 bees at 16 specific and highly polymorphic microsatellite loci, developed using next-generation sequencing. Our results reveal that T. spinipes is capable of dispersing across remarkably long distances, as we did not find genetic differentiation across a 200 km range, nor fine-scale spatial genetic structure. Furthermore, gene flow was not affected by forest cover, land cover, or elevation, indicating that reproductive individuals are able to disperse well through agricultural landscapes and across altitudinal gradients. We also found evidence of a recent population expansion, suggesting that this opportunistic stingless bee is capable of colonizing degraded habitats. Our results thus suggest that T. spinipes can persist in heavily-altered landscapes and can be regarded as a rescue pollinator, potentially compensating for the decline of other native pollinators in degraded tropical landscapes.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • ABIC (2012) Indicadores da indústria de café no Brasil—2012. Associação Brasileira da Indústria de Café, Rio de Janeiro

    Google Scholar 

  • Aizen MA, Feinsinger P (1994) Forest fragmentation, pollination, and plant reproduction in a Chaco dry forest. Argent Ecol 75:330–351

    Article  Google Scholar 

  • Aizen MA, Harder LD (2009) The global stock of domesticated honey bees is growing slower than agricultural demand for pollination. Curr Biol 19:915–918. doi:10.1016/j.cub.2009.03.071

    CAS  Article  PubMed  Google Scholar 

  • Allendorf FW, Luikart GH, Aitken SN (2012) Conservation and the genetics of populations, vol 2. Wiley-Blackwell, West Sussex

    Google Scholar 

  • Araújo E, Costa M, Chaud-Netto J, Fowler H (2004) Body size and flight distance in stingless bees (Hymenoptera: Meliponini): inference of flight range and possible ecological implications Braz. J Biol 64:563–568

    Google Scholar 

  • Beaumont MA (1999) Detecting population expansion and decline using microsatellites. Genetics 153:2013–2029

    CAS  PubMed  PubMed Central  Google Scholar 

  • Biesmeijer JC, Slaa EJ (2006) The structure of eusocial bee assemblages in Brazil. Apidologie 37:240–258

    Article  Google Scholar 

  • Boreux V, Krishnan S, Cheppudira KG, Ghazoul J (2013) Impact of forest fragments on bee visits and fruit set in rain-fed and irrigated coffee agro-forests Agriculture. Ecosyst Environ 172:42–48. doi:10.1016/j.agee.2012.05.003

    Article  Google Scholar 

  • Brosi BJ, Daily GC, Shih TM, Oviedo F, Durán G (2008) The effects of forest fragmentation on bee communities in tropical countryside. J Appl Ecol 45:773–783. doi:10.1111/j.1365-2664.2007.01412.x

    Article  Google Scholar 

  • Brown JC, Oliveira M (2013) The impact of agricultural colonization and deforestation on stingless bee (Apidae: Meliponini) composition and richness in Rondônia, Brazil. Apidologie. doi:10.1007/s13592-013-0236-3

    Google Scholar 

  • Brown MJF, Paxton RJ (2009) The conservation of bees: a global perspective. Apidologie 40:410–416. doi:10.1051/apido/2009019

    Article  Google Scholar 

  • Bruno C, Macchiavelli R, Balzarini M (2008) Non-parametric smoothing of multivariate genetic distances in the analysis of spatial population structure at fine scale. Theor Appl Genet 117:435–447

    CAS  Article  PubMed  Google Scholar 

  • Cerna K, Straka J, Munclinger P (2013) Population structure of pioneer specialist solitary bee Andrena vaga (Hymenoptera: Andrenidae) in central Europe: the effect of habitat fragmentation or evolutionary history? Conserv Genet 14:875–883. doi:10.1007/s10592-013-0482-y

    CAS  Article  Google Scholar 

  • Clarke RT, Rothery P, Raybould AF (2002) Confidence limits for regression relationships between distance matrices: estimating gene flow with distance. J Agric Biol Environ Stat 7:361–372

    Article  Google Scholar 

  • Cornuet JM, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144:2001–2014

    CAS  PubMed  PubMed Central  Google Scholar 

  • da Unesc CA (2008) O Uso de Diferentes Métodos para Amostragem da Fauna de Abelhas (Hymenoptera: Apoidea), um Estudo em Floresta Ombrófila Mista em Santa Catarina. Neotrop Entomol 37:265–278

    Article  Google Scholar 

  • Davis ES, Murray TE, Fitzpatrick Ú, Brown MJF, Paxton RJ (2010) Landscape effects on extremely fragmented populations of a rare solitary bee, Colletes floralis. Mol Ecol 19:4922–4935. doi:10.1111/j.1365-294X.2010.04868.x

    Article  PubMed  Google Scholar 

  • De Marco Jr P, Coelho FM (2004) Services performed by the ecosystem: forest remnants influence agricultural cultures’ pollination and production. Biodivers Conserv 13:1245–1255

    Article  Google Scholar 

  • Dick CW (2001) Genetic rescue of remnant tropical trees by an alien pollinator. Proc R Soc Lond Ser B 268:2391–2396

    CAS  Article  Google Scholar 

  • Donald PF (2004) Biodiversity impacts of some agricultural commodity production systems. Conserv Biol 18:17–38

    Article  Google Scholar 

  • Duarte OMP, Gaiotto FA, Costa MA (2014) Genetic differentiation in the Stingless Bee, Scaptotrigona xanthotricha Moure, 1950 (Apidae, Meliponini): a species with wide geographic distribution in the Atlantic rainforest. J Hered 105:477–484. doi:10.1093/jhered/esu031

    Article  Google Scholar 

  • Dyer R (2014) gstudio: Analyses and functions related to the spatial analysis of genetic marker data, 1.3

  • Engels W, Imperatriz-Fonseca VL (1990) Caste development, reproductive strategies, and control of fertility in honey bees and stingless bees. In: Engels W (ed) Social insects: an evolutionary approach to castes and reproduction. Springer, Berlin/Heidelberg, pp 167–230

    Chapter  Google Scholar 

  • Excoffier L, Foll M, Petit RJ (2009) Genetic consequences of range expansions. Annu Rev Ecol Evol Syst 40:481–501

    Article  Google Scholar 

  • Francisco FO, Santiago LR, Brito RM, Oldroyd BP, Arias MC (2014) Hybridization and asymmetric introgression between Tetragonisca angustula and Tetragonisca fiebrigi. Apidologie 45:1–9

    Article  Google Scholar 

  • Freiria G, Ruim J, Souza R, Sofia S (2012) Population structure and genetic diversity of the orchid bee Eufriesea violacea (Hymenoptera, Apidae, Euglossini) from Atlantic Forest remnants in southern and southeastern Brazil. Apidologie 43:392–402. doi:10.1007/s13592-011-0104-y

    Article  Google Scholar 

  • Gallai N, Salles J-M, Settele J, Vaissière BE (2009) Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecol Econ 68:810–821

    Article  Google Scholar 

  • Garibaldi LA, Aizen MA, Klein AM, Cunningham SA, Harder LD (2011) Global growth and stability of agricultural yield decrease with pollinator dependence. PNAS 108:5909–5914

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Garibaldi LA et al (2013) Wild pollinators enhance fruit set of crops regardless of honey bee abundance. Science. doi:10.1126/science.1230200

    PubMed  Google Scholar 

  • Gelman A, Rubin DB (1992) Inference from iterative simulation using multiple sequences. Stat Sci 7:457–511

    Article  Google Scholar 

  • Giannini TC, Acosta AL, Garófalo CA, Saraiva AM, Alves-dos-Santos I, Imperatriz-Fonseca VL (2012) Pollination services at risk: bee habitats will decrease owing to climate change in Brazil. Ecol Model 244:127–131

    Article  Google Scholar 

  • Giannini T, Boff S, Cordeiro G, Cartolano E Jr, Veiga A, Imperatriz-Fonseca V, Saraiva A (2014) Crop pollinators in Brazil: a review of reported interactions. Apidologie 46:209–223. doi:10.1007/s13592-014-0316-z

    Article  Google Scholar 

  • Giannini TC, Cordeiro G, Freitas B, Saraiva A, Imperatriz-Fonseca V (2015a) The dependence of crops for pollinators and the economic value of pollination in Brazil. J Econ Entomol 108:849–857. doi:10.1093/jee/tov093

    CAS  Article  PubMed  Google Scholar 

  • Giannini TC, Garibaldi LG, Acosta AL, Silva JS, Maia KP, Saraiva AM, Guimarães PR, Kleinert AMP (2015b) Native and non-native supergeneralist bee species have different effects on plant-bee networks. PLoS One 10:e0137198

    Article  PubMed  PubMed Central  Google Scholar 

  • Giannini TC, Tambosi LR, Acosta AL, Jaffe R, Saraiva AM, Imperatriz Fonseca VL, Metzger JP (2015c) Safeguarding ecosystem services: a methodological framework to buffer the joint effect of habitat configuration and climate change. PLoS One 10:e0129225

    Article  PubMed  PubMed Central  Google Scholar 

  • Girod C, Vitalis R, Leblois R, Fréville H (2011) Inferring population decline and expansion from microsatellite data: a simulation-based evaluation of the Msvar method. Genetics 188:165–179

    Article  PubMed  PubMed Central  Google Scholar 

  • González-Varo JP et al (2013) Combined effects of global change pressures on animal-mediated pollination. Trends Ecol Evol 28:524–530. doi:10.1016/j.tree.2013.05.008

    Article  PubMed  Google Scholar 

  • Goulson D et al (2010) Effects of land use at a landscape scale on bumblebee nest density and survival. J Appl Ecol 47:1207–1215. doi:10.1111/j.1365-2664.2010.01872.x

    Article  Google Scholar 

  • Gruber K, Schöning C, Otte M, Kinuthia W, Hasselmann M (2013) Distinct subspecies or phenotypic plasticity? Genetic and morphological differentiation of mountain honey bees in East Africa. Ecol Evol 3:3204–3218

    PubMed  PubMed Central  Google Scholar 

  • Hadley AS, Betts MG (2011) The effects of landscape fragmentation on pollination dynamics: absence of evidence not evidence of absence. Biol Rev 87:526–544

    Article  PubMed  Google Scholar 

  • Hansen MC et al (2013) High-resolution global maps of 21st-century forest cover change. Science 342:850–853. doi:10.1126/science.1244693

    CAS  Article  PubMed  Google Scholar 

  • Hardy OJ, Vekemans X (2002) SPAGeDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes 2:618–620

    Article  Google Scholar 

  • Hijmans R (2014) raster: Geographic data analysis and modeling., 2.2-31

  • Inoue T, Sakagami SF, Salmah S, Yamane S (1984) The process of colony multiplication in the Sumatran stingless bee Trigona (Tetragonula) laeviceps. Biotropica 16:100–111

    Article  Google Scholar 

  • Jaffé R et al (2010) Estimating the density of honeybee colonies across their natural range to fill the gap in pollinator decline censuses. Conserv Biol 24:583–593. doi:10.1111/j.1523-1739.2009.01331.x

    Article  PubMed  Google Scholar 

  • Jaffé R et al (2014) Monogamy in large bee societies: a stingless paradox. Naturwissenschaften 101:261–264. doi:10.1007/s00114-014-1149-3

    Article  PubMed  Google Scholar 

  • Jha S (2015) Contemporary human-altered landscapes and oceanic barriers reduce bumble bee gene flow. Mol Ecol 24:993–1006

    CAS  Article  PubMed  Google Scholar 

  • Jha S, Kremen C (2013a) Resource diversity and landscape-level homogeneity drive native bee foraging. PNAS 110:555–558. doi:10.1073/pnas.1208682110

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Jha S, Kremen C (2013b) Urban land use limits regional bumble bee gene flow. Mol Ecol 22:2483–2495. doi:10.1111/mec.12275

    Article  PubMed  Google Scholar 

  • Jha S, Vandermeer J (2010) Impacts of coffee agroforestry management on tropical bee communities. Biol Conserv 143:1423–1431

    Article  Google Scholar 

  • Jha S, Bacon CM, Philpott SM, Ernesto Méndez V, Läderach P, Rice RA (2014) Shade coffee: update on a disappearing refuge for biodiversity. Bioscience. doi:10.1093/biosci/biu038

    Google Scholar 

  • Joly CA, Metzger JP, Tabarelli M (2014) Experiences from the Brazilian Atlantic Forest: ecological findings and conservation initiatives. New Phytol 204:459–473

    Article  PubMed  Google Scholar 

  • Jones OR, Wang J (2010) COLONY: a program for parentage and sibship inference from multilocus genotype data. Mol Ecol Resour 10:551–555

    Article  PubMed  Google Scholar 

  • Jost L (2008) GST and its relatives do not measure differentiation. Mol Ecol 17:4015–4026

    Article  PubMed  Google Scholar 

  • Kalinowski ST (2005) hp-rare 1.0: a computer program for performing rarefaction on measures of allelic richness. Mol Ecol Notes 5:187–189

    CAS  Article  Google Scholar 

  • Kennedy CM et al (2013) A global quantitative synthesis of local and landscape effects on wild bee pollinators in agroecosystems. Ecol Lett 16:584–599. doi:10.1111/ele.12082

    Article  PubMed  Google Scholar 

  • Klein AM (2009) Nearby rainforest promotes coffee pollination by increasing spatio-temporal stability in bee species richness. For Ecol Manag 258:1838–1845

    Article  Google Scholar 

  • Klein AM, Steffan-Dewenter I, Tscharntke T (2003) Fruit set of highland coffee increases with the diversity of pollinating bees. Proc R Soc Lond Ser B 270:955–961

    Article  Google Scholar 

  • Klein AM, Cunningham SA, Bos M, Steffan-Dewenter I (2008) Advances in pollination ecology from tropical plantation crops. Ecology 89:935–943. doi:10.1890/07-0088.1

    Article  PubMed  Google Scholar 

  • Kremen C et al (2007) Pollination and other ecosystem services produced by mobile organisms: a conceptual framework for the effects of land-use change. Ecol Lett 10:299–314

    Article  PubMed  Google Scholar 

  • Laurance WF, Sayer J, Cassman KG (2014) Agricultural expansion and its impacts on tropical nature. Trends Ecol Evol. doi:10.1016/j.tree.2013.12.001

    Google Scholar 

  • Lautenbach S, Seppelt R, Liebscher J, Dormann CF (2012) Spatial and temporal trends of global pollination benefit. PLoS One 7:e35954

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Lozier JD, Strange JP, Stewart IJ, Cameron SA (2011) Patterns of range-wide genetic variation in six North American bumble bee (Apidae: Bombus) species. Mol Ecol 20:4870–4888. doi:10.1111/j.1365-294X.2011.05314.x

    Article  PubMed  Google Scholar 

  • McRae BH (2006) Isolation by resistance. Evolution 60:1551–1561. doi:10.1111/j.0014-3820.2006.tb00500.x

    Article  PubMed  Google Scholar 

  • McRae BH, Dickson BG, Keitt TH, Shah VB (2008) Using circuit theory to model connectivity in ecology, evolution, and conservation. Ecology 89:2712–2724. doi:10.1890/07-1861.1

    Article  PubMed  Google Scholar 

  • Ngo HT, Mojica AC, Packer L (2011) Coffee plant—pollinator interactions: a review. Can J Zool 89:647–660. doi:10.1139/z11-028

    Article  Google Scholar 

  • Nogueira-Neto P (1997) Vida e Criação de Abelhas Indígenas Sem Ferrão. Editora Nogueirapis, São Paulo

    Google Scholar 

  • Ollerton J, Winfree R, Tarrant S (2011) How many flowering plants are pollinated by animals? Oikos 120:321–326. doi:10.1111/j.1600-0706.2010.18644.x

    Article  Google Scholar 

  • Peterman WE, Connette GM, Semlitsch RD, Eggert LS (2014) Ecological resistance surfaces predict fine-scale genetic differentiation in a terrestrial woodland salamander. Mol Ecol 23:2402–2413. doi:10.1111/mec.12747

    Article  PubMed  Google Scholar 

  • Pinheiro J, Bates D, DebRoy S, Sarkar D (2014) nlme: Linear and nonlinear mixed effects models, 3.1-117

  • Piry S, Luikart G, Cornuet J-M (1999) Computer note. BOTTLENECK: a computer program for detecting recent reductions in the effective size using allele frequency data. J Hered 90:502–503. doi:10.1093/jhered/90.4.502

    Article  Google Scholar 

  • Potts SG, Biesmeijer JC, Kremen C, Neumann P, Schweiger O, Kunin WE (2010) Global pollinator declines: trends, impacts and drivers. Trends Ecol Evol 25:345–353

    Article  PubMed  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ribeiro MC, Metzger JP, Martensen AC, Ponzoni FJ, Hirota MM (2009) The Brazilian Atlantic Forest: how much is left, and how is the remaining forest distributed? Implications for conservation. Biol Conserv 142:1141–1153

    Article  Google Scholar 

  • Ricketts TH (2004) Tropical forest fragments enhance pollinator activity in nearby coffee crops. Conserv Biol 18:1262–1271. doi:10.1111/j.1523-1739.2004.00227.x

    Article  Google Scholar 

  • Ricketts TH et al (2008) Landscape effects on crop pollination services: are there general patterns? Ecol Lett 11:499–515

    Article  PubMed  Google Scholar 

  • Roubik DW (1992) Ecology and natural history of tropical bees. Cambridge University Press, Cambridge

    Google Scholar 

  • Rousset F (2000) Genetic differentiation between individuals. J Evol Biol 13:58–62. doi:10.1046/j.1420-9101.2000.00137.x

    Article  Google Scholar 

  • Rousset F (2008) genepop’007: a complete re-implementation of the genepop software for Windows and Linux. Mol Ecol Resour 8:103–106

    Article  PubMed  Google Scholar 

  • Schuelke M (2000) An economic method for the fluorescent labeling of PCR fragments. Nat Biotechnol 18:233–234

    CAS  Article  PubMed  Google Scholar 

  • Shackleton K, Al Toufailia H, Balfour N, Nascimento F, Alves D, Ratnieks FW (2015) Appetite for self-destruction: suicidal biting as a nest defense strategy in Trigona stingless bees. Behav Ecol Sociobiol 69:273–281. doi:10.1007/s00265-014-1840-6

    Article  PubMed  PubMed Central  Google Scholar 

  • Shirk A, Wallin D, Cushman S, Rice C, Warheit K (2010) Inferring landscape effects on gene flow: a new model selection framework. Mol Ecol 19:3603–3619

    CAS  Article  PubMed  Google Scholar 

  • Stephens PA, Sutherland WJ (1999) Consequences of the Allee effect for behaviour, ecology and conservation. Trends Ecol Evol 14:401–405

    Article  PubMed  Google Scholar 

  • Suni SS, Bronstein JL, Brosi BJ (2014) Spatio-temporal genetic structure of a tropical bee species suggests high dispersal over a fragmented landscape. Biotropica 46:202–209. doi:10.1111/btp.12084

    Article  PubMed  PubMed Central  Google Scholar 

  • Tavares M et al (2013) Genetic variability and population structure in Melipona scutellaris (Hymenoptera: Apidae) from Bahia, Brazil, based on molecular markers. Apidologie 44:720–728. doi:10.1007/s13592-013-0220-y

    Article  Google Scholar 

  • Vaissière B, Freitas BM, Gemmill-Herren B (2011) Protocol to detect and assess pollination deficits in crops: a handbook for its use FAO, Rome

  • Van Oosterhout C, Hutchinson WF, Wills DP, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538

    Article  Google Scholar 

  • Van Strien MJ, Keller D, Holderegger R (2012) A new analytical approach to landscape genetic modelling: least-cost transect analysis and linear mixed models. Mol Ecol 21:4010–4023

    Article  Google Scholar 

  • van Veen JW, Sommeijer MJ (2000) Colony reproduction in Tetragonisca angustula (Apidae, Meliponini). Insectes Soc 47:70–75. doi:10.1007/s000400050011

    Article  Google Scholar 

  • Vanbergen AJ, The Insect Pollinators Initiative (2013) Threats to an ecosystem service: pressures on pollinators. Frontiers in Ecology and the Environment 11:251–259

    Article  Google Scholar 

  • vanEngelsdorp D, Meixner MD (2010) A historical review of managed honey bee populations in Europe and the United States and the factors that may affect them. J Invertebr Pathol 103:S80–S95

    Article  PubMed  Google Scholar 

  • Viana BF et al (2012) How well do we understand landscape effects on pollinators and pollination services? J Pollinat Ecol 7:31–41

    Google Scholar 

  • Williamson-Natesan E (2005) Comparison of methods for detecting bottlenecks from microsatellite loci. Conserv Genet 6:551–562. doi:10.1007/s10592-005-9009-5

    Article  Google Scholar 

  • Winfree R, Aguilar R, Vázquez DP, LeBuhn G, Aizen MA (2009) A meta-analysis of bees’ responses to anthropogenic disturbance. Ecology 90:2068–2076

    Article  PubMed  Google Scholar 

  • Wratten SD, Gillespie M, Decourtye A, Mader E, Desneux N (2012) Pollinator habitat enhancement: benefits to other ecosystem services Agriculture. Ecosyst Environ 159:112–122

    Article  Google Scholar 

  • Zimmermann Y, Schorkopf DLP, Moritz RFA, Pemberton RW, Quezada-Euan JJG, Eltz T (2011) Population genetic structure of orchid bees (Euglossini) in anthropogenically altered landscapes. Conserv Genet 12:1183–1194. doi:10.1007/s10592-011-0221-1

    Article  Google Scholar 

Download references

Acknowledgments

We thank Larissa Boesing, Adrian González, Pedro Leite and Fernanda Saturni for help during the collection of bees, Silvia Pedro and Airton Carvalho for the identification of bee specimens, Sónia Andrade for the bioinformatic processing related to the development of microsatellites, the coffee farmers for allowing us access to their farms, and Mr. Marcus Leite for providing logistical support in the field. Funding was provided by FAPESP (RJ: 2012/13200-5 and 2013/23661-2, Interface Project: 2013/23457-6) and an NSF predoctoral fellowship (NP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodolfo Jaffé.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 60 kb) GeneBank accession numbers and detailed information for all microsatellite loci

Supplementary material 2 (XLSX 29 kb) Spatial coordinates, final genotypes, land cover legends, and raster resolutions

Supplementary material 3 (DOCX 169 kb) Correlograms showing the relationship between the different resistance distances

10592_2015_779_MOESM4_ESM.docx

Supplementary material 4 (DOCX 698 kb) STRUCTURE results showing the most likely number of populations represented in our sample (optimal K)

10592_2015_779_MOESM5_ESM.docx

Supplementary material 5 (DOCX 235 kb) Per locus and multi-locus distribution of allele frequencies and BOTTLENECK test for heterozygosity excess

Supplementary material 6 (DOCX 1168 kb) Additional methods and results from the MSVAR analyses

10592_2015_779_MOESM7_ESM.docx

Supplementary material 7 (DOCX 19 kb) Model selection summary and summary statistics of the best alternative MLPE models

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jaffé, R., Castilla, A., Pope, N. et al. Landscape genetics of a tropical rescue pollinator. Conserv Genet 17, 267–278 (2016). https://doi.org/10.1007/s10592-015-0779-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-015-0779-0

Keywords

  • Agricultural landscapes
  • Tropical forest cover
  • Gene flow
  • Landscape resistance
  • Pollination services
  • Stingless bees