Skip to main content

Advertisement

Log in

Distinctive insular forms of threespine stickleback (Gasterosteus aculeatus) from western Mediterranean islands

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

Neutral and adaptive variation among populations within a species is a major component of biological diversity and may be pronounced among insular populations due to geographical isolation and island specific evolutionary forces at work. Detecting and preserving potential evolutionary significant units below the species rank has become a crucial task for conservation biology. Combining genetic, phenotypic and ecological data, we investigated evolutionary patterns among the enigmatic threespine stickleback populations from western Mediterranean islands, all of which are threatened by habitat deterioration and climate change. We find indications that these populations derive from different genetic lineages, being genetically highly distinct from the stickleback of mainland Europe and the northern Atlantic as well as from each other. Mediterranean island stickleback populations are also phenotypically distinct from mainland populations but interestingly stickleback from Iceland have converged on a similar phenotype. This distinctive island stickleback phenotype seems to be driven by distinct selective regimes on islands versus continents. Overall, our results reveal the status of western Mediterranean island stickleback as evolutionarily distinct units, important for conservation of biodiversity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aldenhoven JT, Miller MA, Corneli PS, Shapiro MD (2010) Phylogeography of ninespine sticklebacks (Pungitius pungitius) in North America: glacial refugia and the origins of adaptive traits. Mol Ecol 19:4061–4076. doi:10.1111/j.1365-294X.2010.04801.x

    Article  CAS  PubMed  Google Scholar 

  • Araguas RM, Vidal O, Pla C, Sanz N (2012) High genetic diversity of the endangered Iberian three-spined stickleback (Gasterosteus aculeatus) at the Mediterranean edge of its range. Freshw Biol 57:143–154. doi:10.1111/j.1365-2427.2011.02705.x

    Article  Google Scholar 

  • Bell MA (1981) Lateral plate polymorphism and ontogeny of the complete plate morph of threespine sticklebacks (Gasterosteus aculeatus). Evolution 35:67–74

    Article  Google Scholar 

  • Bell MA, Foster SA (1994) The evolutionary biology of the threespine stickleback. Oxford University Press, Oxford

    Google Scholar 

  • Berner D, Adams DC, Grandchamp A-C, Hendry AP (2008) Natural selection drives patterns of lake-stream divergence in stickleback foraging morphology. J Evol Biol 21:1653–1665. doi:10.1111/j.1420-9101.2008.01583.x

    Article  CAS  PubMed  Google Scholar 

  • Bertin L (1925) Recherches bionomiques, biométriques et sysématiques sur les épinoches (Gastérostéidés). Ann Inst Océanogr Monaco 2:1–204

    Google Scholar 

  • Bianco PG (1980) Areale Italico, rinvenimento in Calabria e origini delle popolationi metiterranee di Gasterosteus aculeatus L. Boll Mus Vic St Nat Verona 7:197–216

    Google Scholar 

  • Bouckaert R, Heled J, Kühnert D et al (2014) BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Comput Biol 10:e1003537. doi:10.1371/journal.pcbi.1003537

    Article  PubMed Central  PubMed  Google Scholar 

  • Cano JM, Mäkinen HS, Leinonen T et al (2008) Extreme neutral genetic and morphological divergence supports classification of Adriatic three-spined stickleback (Gasterosteus aculeatus) populations as distinct conservation units. Biol Conserv 141:1055–1066. doi:10.1016/j.biocon.2008.01.015

    Article  Google Scholar 

  • Case TJ (1978) A general explanation for insular body size trends in terrestrial vertebrates. Ecology 59:1–18. doi:10.2307/1936628

    Article  Google Scholar 

  • Clavero M, Pou-Rovira Q, Zamora L (2009) Biology and habitat use of three-spined stickleback (Gasterosteus aculeatus) in intermittent Mediterranean streams. Ecol Freshw Fish 18:550–559

    Article  Google Scholar 

  • Colosimo PF, Hosemann KE, Balabhadra S et al (2005) Widespread parallel evolution in sticklebacks by repeated fixation of Ectodysplasin alleles. Science 307:1928–1933. doi:10.1126/science.1107239

    Article  CAS  PubMed  Google Scholar 

  • Courchamp F, Hoffmann BD, Russell JC et al (2014) Climate change, sea-level rise, and conservation: keeping island biodiversity afloat. Trends Ecol Evol 29:127–130. doi:10.1016/j.tree.2014.01.001

    Article  PubMed  Google Scholar 

  • Crivelli AJ, Britton RH (1987) Life history adaptations of Gasterosteus aculeatus in a Mediterranean wetland. Environ Biol Fish 18:109–125

    Article  Google Scholar 

  • Cuttelod A, Garcia N, Malak DA et al (2008) The Mediterranean: a biodiversity hotspot under threat. The 2008 Review of The IUCN Red List of Threatened Species. IUCN, Gland, p 1–16

  • Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9:772. doi:10.1038/nmeth.2109

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • DeFaveri J, Zanella LN, Zanella D et al (2012) Phylogeography of isolated freshwater three-spined stickleback Gasterosteus aculeatus populations in the Adriatic Sea basin. J Fish Biol 80:61–85. doi:10.1111/j.1095-8649.2011.03147.x

    Article  CAS  PubMed  Google Scholar 

  • Elton CS (1958) The ecology of invasions by animals and plants. University Of Chicago Press, Chicago

    Book  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620. doi:10.1111/j.1365-294X.2005.02553.x

    Article  CAS  PubMed  Google Scholar 

  • Falush D, Stephens M, Pritchard J (2007) Inference of population structure using multilocus genotype data: dominant markers and null alleles. Mol Ecol Notes 7:574–578. doi:10.1111/j.1471-8286.2007.01758.x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Felsenstein J (2012) PHYLIP (Phylogeny Inference Package) version 3.69. Distributed by the author. Department of Genome Sciences. University of Washington, Seattle, WA.

  • Foster JB (1964) Evolution of mammals on islands. Nature 202:234–235

    Article  Google Scholar 

  • Frommen JG, Herder F, Engqvist L et al (2011) Costly plastic morphological responses to predator specific odour cues in three-spined sticklebacks (Gasterosteus aculeatus). Evol Ecol 25:641–656. doi:10.1007/s10682-010-9454-6

    Article  Google Scholar 

  • Gasith A, Resh VH (1999) Streams in mediterranean climate regions: abiotic influences and biotic responses to predictable seasonal events. Annu Rev Ecol Evol Syst 30:51–81. doi:10.2307/221679

    Article  Google Scholar 

  • Gauthier A, Rose B (1974) Presence de l’épinoche en Corse. Bull Sco Sci Hist Nat Corse 44:41–48

    Google Scholar 

  • Geiger MF, Herder F, Monaghan MT et al (2014) Spatial heterogeneity in the Mediterranean Biodiversity Hotspot affects barcoding accuracy of its freshwater fishes. Mol Ecol Resour 14:1210–1221. doi:10.1111/1755-0998.12257

    Article  CAS  PubMed  Google Scholar 

  • Gross HP (1977) Adaptive trends of environmentally sensitive traits in the three-spined stickleback, Gasterosteus aculeatus L. Z Zool Syst Evol 15:252–278

    Article  Google Scholar 

  • Gross HP (1978) Natural selection by predators on defensive apparatus of the three-spined stickleback, Gasterosteus aculeatus L. Can J Zool 56:398–413

    Article  Google Scholar 

  • Hedrick PW (2005) A standardized genetic differentiation measure. Evolution 59:1633–1638

    Article  CAS  PubMed  Google Scholar 

  • Hewitt G (2000) The genetic legacy of the Quaternary ice ages. Nature 405:907–913. doi:10.1038/35016000

    Article  CAS  PubMed  Google Scholar 

  • Jones FC, Chan YF, Schmutz J et al (2012) A genome-wide SNP genotyping array reveals patterns of global and repeated species-pair divergence in sticklebacks. Curr Biol 22:83–90. doi:10.1016/j.cub.2011.11.045

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Keenan K, McGinnity P, Cross TF et al (2013) diveRsity: an R package for the estimation and exploration of population genetics parameters and their associated errors. Methods Ecol Evol 4:782–788. doi:10.1111/2041-210X.12067

    Article  Google Scholar 

  • Kottelat M, Freyhof J (2007) Handbook of European freshwater fishes. Kottelat, Cornol and Freyhof, Berlin

    Google Scholar 

  • Kristjánsson BK, Skulason S, Noakes D (2002) Morphological segregation of Icelandic threespine stickleback (Gasterosteus aculeatus L). Biol J Linn Soc 76:247–257

    Article  Google Scholar 

  • Krupp F, Coad BW (1985) Notes on a population of the threespine stickleback, Gasterosteus aculeatus, from Syria (Pisces: Osteichthyes: Gasterosteidae). Senckenberg Biol 66:35–39

    Google Scholar 

  • Lande R (1998) Anthropogenic, ecological and genetic factors in extinction and conservation. Res Popul Ecol 40:259–269

    Article  Google Scholar 

  • Lobón-Cerviá J, Penczak T, de Sostoa A (1988) Morphological variability and distribution of stickleback (Gasterosteus aculeatus L.) in Spain. Cybium 12:219–227

    Google Scholar 

  • Lockwood JL, Hoopes MF, Marchetti MP (2007) Invasion ecology. Blackwell, Malden

    Google Scholar 

  • Lomolino MV (1985) Body size of mammals on islands: the island rule reexamined. Am Nat 125:310–316. doi:10.2307/2461638

    Article  Google Scholar 

  • Lomolino MV (2005) Body size evolution in insular vertebrates: generality of the island rule. J Biogeogr 32:1683–1699. doi:10.1111/j.1365-2699.2005.01314.x

    Article  Google Scholar 

  • Lomolino MV, Sax DF, Palombo MR (2012) Of mice and mammoths evaluations of causal explanations for body size evolution in insular mammals. J Biogeogr 40:1427–1439

    Article  Google Scholar 

  • Lucek K, Roy D, Bezault E et al (2010) Hybridization between distant lineages increases adaptive variation during a biological invasion: stickleback in Switzerland. Mol Ecol 19:3995–4011. doi:10.1111/j.1365-294X.2010.04781.x

    Article  PubMed  Google Scholar 

  • Lucek K, Sivasundar A, Seehausen O (2012) Evidence of adaptive evolutionary divergence during biological invasion. PLoS One 7:e49377. doi:10.1371/journal.pone.0049377

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lucek K, Lemoine M, Seehausen O (2014a) Contemporary ecotypic divergence during a recent range expansion was facilitated by adaptive introgression. J Evol Biol 27:2233–2248. doi:10.1111/jeb.12475

    Article  CAS  PubMed  Google Scholar 

  • Lucek K, Sivasundar A, Kristjánsson BK et al (2014b) Quick divergence but slow convergence during ecotype formation in lake and stream stickleback pairs of variable age. J Evol Biol 27:1878–1892. doi:10.1111/jeb.12439

    Article  CAS  PubMed  Google Scholar 

  • MacColl ADC, El Nagar A, de Roij J (2013) The evolutionary ecology of dwarfism in three-spined sticklebacks. J Anim Ecol 82:642–652. doi:10.1111/1365-2656.12028

    Article  PubMed  Google Scholar 

  • Mäkinen HS, Merilä J (2008) Mitochondrial DNA phylogeography of the three-spined stickleback (Gasterosteus aculeatus) in Europe-Evidence for multiple glacial refugia. Mol Phylogenet Evol 46:167–182. doi:10.1016/j.ympev.2007.06.011

    Article  PubMed  Google Scholar 

  • Mäkinen HS, Cano JM, Merilä J (2006) Genetic relationships among marine and freshwater populations of the European three-spined stickleback (Gasterosteus aculeatus) revealed by microsatellites. Mol Ecol 15:1519–1534. doi:10.1111/j.1365-294X.2006.02871.x

    Article  PubMed  Google Scholar 

  • McGuigan K, Nishimura N, Currey M et al (2011) Cryptic genetic variation and body size evolution in threespine stickleback. Evolution 65:1203–1211. doi:10.1111/j.1558-5646.2010.01195.x

    Article  PubMed  Google Scholar 

  • McKinnon JS, Rundle H (2002) Speciation in nature: the threespine stickleback model systems. Trends Ecol Evol 17:480–488

    Article  Google Scholar 

  • Meirmans PG, Hedrick PW (2011) Assessing population structure: FST and related measures. Mol Ecol Resour 11:5–18

    Article  PubMed  Google Scholar 

  • Meirmans PG, Van Tienderen P (2004) GENOTYPE and GENODIVE: two programs for the analysis of genetic diversity of asexual organisms. Mol Ecol Notes 4:792–794

    Article  Google Scholar 

  • Mori S (1987) Divergence in reproductive ecology of the three-spined stickleback, Gasterosteus aculeatus. Jpn J Ichthyol 34:165–175

    Google Scholar 

  • Mori S, Takamura N (2004) Changes in morphological characteristics of an introduced population of the threespine stickleback Gasterosteus aculeatus in Lake Towada, northern Japan. Ichthyol Res 51:295–300. doi:10.1007/s10228-004-0232-8

    Article  Google Scholar 

  • Moritz C (1994) Defining “Evolutionarily significant units” for conservation. Trends Ecol Evol 9:373–375. doi:10.1016/0169-5347(94)90057-4

    Article  CAS  PubMed  Google Scholar 

  • Münzing J (1963) The evolution of variation and distributional patterns in European populations of the three-spined stickleback, Gasterosteus aculeatus. Evolution 17:320–332

    Article  Google Scholar 

  • Nagel L, Schluter D (1998) Body size, natural selection, and speciation in sticklebacks. Evolution 52:209–218

    Article  Google Scholar 

  • NatureServe (2015) Gasterosteus aculeatus. The IUCN Red List of Threatened Species. Version 2015.1. www.iucnredlist.org. Accessed 29 April 2015

  • Olden JD, Leroy Poff N, Douglas MR et al (2004) Ecological and evolutionary consequences of biotic homogenization. Trends Ecol Evol 19:18–24. doi:10.1016/j.tree.2003.09.010

    Article  PubMed  Google Scholar 

  • Orru F, Deiana AM, Cau A (2010) Introduction and distribution of alien freshwater fishes on the island of Sardinia (Italy): an assessment on the basis of existing data sources. J Appl Ichthyol 26:46–52. doi:10.1111/j.1439-0426.2010.01501.x

    Article  Google Scholar 

  • Orti G, Bell MA, Reimchen TE, Meyer A (1994) Global survey of mitochondrial DNA sequences in the threespine stickleback: evidence for recent migrations. Evolution 48:608–622

    Article  Google Scholar 

  • Palmer TN, Räisänen J (2002) Quantifying the risk of extreme seasonal precipitation events in a changing climate. Nature 415:512–514. doi:10.1038/415512a

    Article  CAS  PubMed  Google Scholar 

  • Pereira HM, Leadley PW, Proença V et al (2010) Scenarios for global biodiversity in the 21st century. Science 330:1496–1501. doi:10.1126/science.1196624

    Article  CAS  PubMed  Google Scholar 

  • R Development Core Team (2012) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. www.r-project.org

  • Rambaut A, Suchard MA, Xie D, Drummond AJ (2014) Tracer v1.6. Available from http://beast.bio.ed.ac.uk/Tracer

  • Reimchen TE (1994) Predators and morphological evolution in threespine stickleback. In: Bell M, Foster S (eds) The evolutionary biology of the threespine stickleback, 1st edn. Oxford University Press, Oxford, pp 240–276

    Google Scholar 

  • Rezansoff AM, Crispo E, Blair C et al (2015) Toward the genetic origins of a potentially non-native population of threespine stickleback (Gasterosteus aculeatus) in Alberta. Conserv Genet. doi:10.5061/dryad.pc1th

    Google Scholar 

  • Richmond JQ, Jacobs DK, Backlin AR et al (2014) Ephemeral stream reaches preserve the evolutionary and distributional history of threespine stickleback in the Santa Clara and Ventura River watersheds of southern California. Conserv Genet. doi:10.1007/s10592-014-0643-7

    Google Scholar 

  • Ricketts TH, Dinerstein E, Boucher T et al (2005) Pinpointing and preventing imminent extinctions. Proc Natl Acad Sci USA 102:18497–18501. doi:10.1073/pnas.0509060102

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Riera F (1980) Breves notas y primera cita del Espinoso (Gasterosteus aculeatus L.) en S’Albufera, Mallorca. Boll Soc Hist Nat Balears 24:109–111

    Google Scholar 

  • Ryder OA (1986) Species conservation and systematics—the dilemma of subspecies. Trends Ecol Evol 1:9–10

    Article  Google Scholar 

  • Schluter D, Conte GL (2009) Genetics and ecological speciation. Proc Natl Acad Sci USA 106(Suppl 1):9955–9962. doi:10.1073/pnas.0901264106

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Seehausen O, vanAlphen J, Witte F (1997) Cichlid fish diversity threatened by eutrophication that curbs sexual selection. Science 277:1808–1811

    Article  CAS  Google Scholar 

  • Spence R, Wootton RJ, Barber I et al (2013) Ecological causes of morphological evolution in the three-spined stickleback. Ecol Evol 3:1717–1726. doi:10.1002/ece3.581

    Article  PubMed Central  PubMed  Google Scholar 

  • Tamura K, Peterson D, Peterson N et al (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739. doi:10.1093/molbev/msr121

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Taylor EB, Boughman JW, Groenenboom M et al (2006) Speciation in reverse: morphological and genetic evidence of the collapse of a three-spined stickleback (Gasterosteus aculeatus) species pair. Mol Ecol 15:343–355. doi:10.1111/j.1365-294X.2005.02794.x

    Article  CAS  PubMed  Google Scholar 

  • Vonlanthen P, Bittner D, Hudson AG et al (2012) Eutrophication causes speciation reversal in whitefish adaptive radiations. Nature 482:357–362. doi:10.1038/nature10824

    Article  CAS  PubMed  Google Scholar 

  • Watanabe K, Mori S, Nishida M (2003) Genetic relationships and origin of two geographic groups of the freshwater threespine stickleback, “hariyo”. Zool Sci 20:265–274. doi:10.2108/zsj.20.265

    Article  CAS  PubMed  Google Scholar 

  • Whittaker RJ, Fernández-Palacios JM (2007) Island biogeography: ecology, evolution and conservation. Oxford University Press, Oxford

    Google Scholar 

Download references

Acknowledgments

This work was partially supported by EAWAG action field project AquaDiverse to OS. KL was further supported by a Swiss National Science Foundation Early Postdoc. Mobility grant P2BEP3_152103. We thank Miguel Hermida, Rafał Bernaś, Flavio Orrù and David Marques for providing specimens and Helmut Wellendorf from the Museum of Natural History in Vienna for his assistance in obtaining phenotypic data for Sardinian specimens. Mélissa Lemoine, Joana Meier, Víctor Soria-Carrasco and two anonymous reviewers provided valuable comments on an earlier version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kay Lucek.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Summary statistics for the individual based assignments using Structure: a) estimated likelihood for each run ± 1 SD; b) estimation of Delta K following Evanno et al. (2005). Supplementary material 1 (PDF 44 kb)

Supplementary material 2 (DOCX 22 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lucek, K., Seehausen, O. Distinctive insular forms of threespine stickleback (Gasterosteus aculeatus) from western Mediterranean islands. Conserv Genet 16, 1319–1333 (2015). https://doi.org/10.1007/s10592-015-0742-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-015-0742-0

Keywords

Navigation