Abstract
Neutral and adaptive variation among populations within a species is a major component of biological diversity and may be pronounced among insular populations due to geographical isolation and island specific evolutionary forces at work. Detecting and preserving potential evolutionary significant units below the species rank has become a crucial task for conservation biology. Combining genetic, phenotypic and ecological data, we investigated evolutionary patterns among the enigmatic threespine stickleback populations from western Mediterranean islands, all of which are threatened by habitat deterioration and climate change. We find indications that these populations derive from different genetic lineages, being genetically highly distinct from the stickleback of mainland Europe and the northern Atlantic as well as from each other. Mediterranean island stickleback populations are also phenotypically distinct from mainland populations but interestingly stickleback from Iceland have converged on a similar phenotype. This distinctive island stickleback phenotype seems to be driven by distinct selective regimes on islands versus continents. Overall, our results reveal the status of western Mediterranean island stickleback as evolutionarily distinct units, important for conservation of biodiversity.







Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Aldenhoven JT, Miller MA, Corneli PS, Shapiro MD (2010) Phylogeography of ninespine sticklebacks (Pungitius pungitius) in North America: glacial refugia and the origins of adaptive traits. Mol Ecol 19:4061–4076. doi:10.1111/j.1365-294X.2010.04801.x
Araguas RM, Vidal O, Pla C, Sanz N (2012) High genetic diversity of the endangered Iberian three-spined stickleback (Gasterosteus aculeatus) at the Mediterranean edge of its range. Freshw Biol 57:143–154. doi:10.1111/j.1365-2427.2011.02705.x
Bell MA (1981) Lateral plate polymorphism and ontogeny of the complete plate morph of threespine sticklebacks (Gasterosteus aculeatus). Evolution 35:67–74
Bell MA, Foster SA (1994) The evolutionary biology of the threespine stickleback. Oxford University Press, Oxford
Berner D, Adams DC, Grandchamp A-C, Hendry AP (2008) Natural selection drives patterns of lake-stream divergence in stickleback foraging morphology. J Evol Biol 21:1653–1665. doi:10.1111/j.1420-9101.2008.01583.x
Bertin L (1925) Recherches bionomiques, biométriques et sysématiques sur les épinoches (Gastérostéidés). Ann Inst Océanogr Monaco 2:1–204
Bianco PG (1980) Areale Italico, rinvenimento in Calabria e origini delle popolationi metiterranee di Gasterosteus aculeatus L. Boll Mus Vic St Nat Verona 7:197–216
Bouckaert R, Heled J, Kühnert D et al (2014) BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Comput Biol 10:e1003537. doi:10.1371/journal.pcbi.1003537
Cano JM, Mäkinen HS, Leinonen T et al (2008) Extreme neutral genetic and morphological divergence supports classification of Adriatic three-spined stickleback (Gasterosteus aculeatus) populations as distinct conservation units. Biol Conserv 141:1055–1066. doi:10.1016/j.biocon.2008.01.015
Case TJ (1978) A general explanation for insular body size trends in terrestrial vertebrates. Ecology 59:1–18. doi:10.2307/1936628
Clavero M, Pou-Rovira Q, Zamora L (2009) Biology and habitat use of three-spined stickleback (Gasterosteus aculeatus) in intermittent Mediterranean streams. Ecol Freshw Fish 18:550–559
Colosimo PF, Hosemann KE, Balabhadra S et al (2005) Widespread parallel evolution in sticklebacks by repeated fixation of Ectodysplasin alleles. Science 307:1928–1933. doi:10.1126/science.1107239
Courchamp F, Hoffmann BD, Russell JC et al (2014) Climate change, sea-level rise, and conservation: keeping island biodiversity afloat. Trends Ecol Evol 29:127–130. doi:10.1016/j.tree.2014.01.001
Crivelli AJ, Britton RH (1987) Life history adaptations of Gasterosteus aculeatus in a Mediterranean wetland. Environ Biol Fish 18:109–125
Cuttelod A, Garcia N, Malak DA et al (2008) The Mediterranean: a biodiversity hotspot under threat. The 2008 Review of The IUCN Red List of Threatened Species. IUCN, Gland, p 1–16
Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9:772. doi:10.1038/nmeth.2109
DeFaveri J, Zanella LN, Zanella D et al (2012) Phylogeography of isolated freshwater three-spined stickleback Gasterosteus aculeatus populations in the Adriatic Sea basin. J Fish Biol 80:61–85. doi:10.1111/j.1095-8649.2011.03147.x
Elton CS (1958) The ecology of invasions by animals and plants. University Of Chicago Press, Chicago
Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620. doi:10.1111/j.1365-294X.2005.02553.x
Falush D, Stephens M, Pritchard J (2007) Inference of population structure using multilocus genotype data: dominant markers and null alleles. Mol Ecol Notes 7:574–578. doi:10.1111/j.1471-8286.2007.01758.x
Felsenstein J (2012) PHYLIP (Phylogeny Inference Package) version 3.69. Distributed by the author. Department of Genome Sciences. University of Washington, Seattle, WA.
Foster JB (1964) Evolution of mammals on islands. Nature 202:234–235
Frommen JG, Herder F, Engqvist L et al (2011) Costly plastic morphological responses to predator specific odour cues in three-spined sticklebacks (Gasterosteus aculeatus). Evol Ecol 25:641–656. doi:10.1007/s10682-010-9454-6
Gasith A, Resh VH (1999) Streams in mediterranean climate regions: abiotic influences and biotic responses to predictable seasonal events. Annu Rev Ecol Evol Syst 30:51–81. doi:10.2307/221679
Gauthier A, Rose B (1974) Presence de l’épinoche en Corse. Bull Sco Sci Hist Nat Corse 44:41–48
Geiger MF, Herder F, Monaghan MT et al (2014) Spatial heterogeneity in the Mediterranean Biodiversity Hotspot affects barcoding accuracy of its freshwater fishes. Mol Ecol Resour 14:1210–1221. doi:10.1111/1755-0998.12257
Gross HP (1977) Adaptive trends of environmentally sensitive traits in the three-spined stickleback, Gasterosteus aculeatus L. Z Zool Syst Evol 15:252–278
Gross HP (1978) Natural selection by predators on defensive apparatus of the three-spined stickleback, Gasterosteus aculeatus L. Can J Zool 56:398–413
Hedrick PW (2005) A standardized genetic differentiation measure. Evolution 59:1633–1638
Hewitt G (2000) The genetic legacy of the Quaternary ice ages. Nature 405:907–913. doi:10.1038/35016000
Jones FC, Chan YF, Schmutz J et al (2012) A genome-wide SNP genotyping array reveals patterns of global and repeated species-pair divergence in sticklebacks. Curr Biol 22:83–90. doi:10.1016/j.cub.2011.11.045
Keenan K, McGinnity P, Cross TF et al (2013) diveRsity: an R package for the estimation and exploration of population genetics parameters and their associated errors. Methods Ecol Evol 4:782–788. doi:10.1111/2041-210X.12067
Kottelat M, Freyhof J (2007) Handbook of European freshwater fishes. Kottelat, Cornol and Freyhof, Berlin
Kristjánsson BK, Skulason S, Noakes D (2002) Morphological segregation of Icelandic threespine stickleback (Gasterosteus aculeatus L). Biol J Linn Soc 76:247–257
Krupp F, Coad BW (1985) Notes on a population of the threespine stickleback, Gasterosteus aculeatus, from Syria (Pisces: Osteichthyes: Gasterosteidae). Senckenberg Biol 66:35–39
Lande R (1998) Anthropogenic, ecological and genetic factors in extinction and conservation. Res Popul Ecol 40:259–269
Lobón-Cerviá J, Penczak T, de Sostoa A (1988) Morphological variability and distribution of stickleback (Gasterosteus aculeatus L.) in Spain. Cybium 12:219–227
Lockwood JL, Hoopes MF, Marchetti MP (2007) Invasion ecology. Blackwell, Malden
Lomolino MV (1985) Body size of mammals on islands: the island rule reexamined. Am Nat 125:310–316. doi:10.2307/2461638
Lomolino MV (2005) Body size evolution in insular vertebrates: generality of the island rule. J Biogeogr 32:1683–1699. doi:10.1111/j.1365-2699.2005.01314.x
Lomolino MV, Sax DF, Palombo MR (2012) Of mice and mammoths evaluations of causal explanations for body size evolution in insular mammals. J Biogeogr 40:1427–1439
Lucek K, Roy D, Bezault E et al (2010) Hybridization between distant lineages increases adaptive variation during a biological invasion: stickleback in Switzerland. Mol Ecol 19:3995–4011. doi:10.1111/j.1365-294X.2010.04781.x
Lucek K, Sivasundar A, Seehausen O (2012) Evidence of adaptive evolutionary divergence during biological invasion. PLoS One 7:e49377. doi:10.1371/journal.pone.0049377
Lucek K, Lemoine M, Seehausen O (2014a) Contemporary ecotypic divergence during a recent range expansion was facilitated by adaptive introgression. J Evol Biol 27:2233–2248. doi:10.1111/jeb.12475
Lucek K, Sivasundar A, Kristjánsson BK et al (2014b) Quick divergence but slow convergence during ecotype formation in lake and stream stickleback pairs of variable age. J Evol Biol 27:1878–1892. doi:10.1111/jeb.12439
MacColl ADC, El Nagar A, de Roij J (2013) The evolutionary ecology of dwarfism in three-spined sticklebacks. J Anim Ecol 82:642–652. doi:10.1111/1365-2656.12028
Mäkinen HS, Merilä J (2008) Mitochondrial DNA phylogeography of the three-spined stickleback (Gasterosteus aculeatus) in Europe-Evidence for multiple glacial refugia. Mol Phylogenet Evol 46:167–182. doi:10.1016/j.ympev.2007.06.011
Mäkinen HS, Cano JM, Merilä J (2006) Genetic relationships among marine and freshwater populations of the European three-spined stickleback (Gasterosteus aculeatus) revealed by microsatellites. Mol Ecol 15:1519–1534. doi:10.1111/j.1365-294X.2006.02871.x
McGuigan K, Nishimura N, Currey M et al (2011) Cryptic genetic variation and body size evolution in threespine stickleback. Evolution 65:1203–1211. doi:10.1111/j.1558-5646.2010.01195.x
McKinnon JS, Rundle H (2002) Speciation in nature: the threespine stickleback model systems. Trends Ecol Evol 17:480–488
Meirmans PG, Hedrick PW (2011) Assessing population structure: FST and related measures. Mol Ecol Resour 11:5–18
Meirmans PG, Van Tienderen P (2004) GENOTYPE and GENODIVE: two programs for the analysis of genetic diversity of asexual organisms. Mol Ecol Notes 4:792–794
Mori S (1987) Divergence in reproductive ecology of the three-spined stickleback, Gasterosteus aculeatus. Jpn J Ichthyol 34:165–175
Mori S, Takamura N (2004) Changes in morphological characteristics of an introduced population of the threespine stickleback Gasterosteus aculeatus in Lake Towada, northern Japan. Ichthyol Res 51:295–300. doi:10.1007/s10228-004-0232-8
Moritz C (1994) Defining “Evolutionarily significant units” for conservation. Trends Ecol Evol 9:373–375. doi:10.1016/0169-5347(94)90057-4
Münzing J (1963) The evolution of variation and distributional patterns in European populations of the three-spined stickleback, Gasterosteus aculeatus. Evolution 17:320–332
Nagel L, Schluter D (1998) Body size, natural selection, and speciation in sticklebacks. Evolution 52:209–218
NatureServe (2015) Gasterosteus aculeatus. The IUCN Red List of Threatened Species. Version 2015.1. www.iucnredlist.org. Accessed 29 April 2015
Olden JD, Leroy Poff N, Douglas MR et al (2004) Ecological and evolutionary consequences of biotic homogenization. Trends Ecol Evol 19:18–24. doi:10.1016/j.tree.2003.09.010
Orru F, Deiana AM, Cau A (2010) Introduction and distribution of alien freshwater fishes on the island of Sardinia (Italy): an assessment on the basis of existing data sources. J Appl Ichthyol 26:46–52. doi:10.1111/j.1439-0426.2010.01501.x
Orti G, Bell MA, Reimchen TE, Meyer A (1994) Global survey of mitochondrial DNA sequences in the threespine stickleback: evidence for recent migrations. Evolution 48:608–622
Palmer TN, Räisänen J (2002) Quantifying the risk of extreme seasonal precipitation events in a changing climate. Nature 415:512–514. doi:10.1038/415512a
Pereira HM, Leadley PW, Proença V et al (2010) Scenarios for global biodiversity in the 21st century. Science 330:1496–1501. doi:10.1126/science.1196624
R Development Core Team (2012) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. www.r-project.org
Rambaut A, Suchard MA, Xie D, Drummond AJ (2014) Tracer v1.6. Available from http://beast.bio.ed.ac.uk/Tracer
Reimchen TE (1994) Predators and morphological evolution in threespine stickleback. In: Bell M, Foster S (eds) The evolutionary biology of the threespine stickleback, 1st edn. Oxford University Press, Oxford, pp 240–276
Rezansoff AM, Crispo E, Blair C et al (2015) Toward the genetic origins of a potentially non-native population of threespine stickleback (Gasterosteus aculeatus) in Alberta. Conserv Genet. doi:10.5061/dryad.pc1th
Richmond JQ, Jacobs DK, Backlin AR et al (2014) Ephemeral stream reaches preserve the evolutionary and distributional history of threespine stickleback in the Santa Clara and Ventura River watersheds of southern California. Conserv Genet. doi:10.1007/s10592-014-0643-7
Ricketts TH, Dinerstein E, Boucher T et al (2005) Pinpointing and preventing imminent extinctions. Proc Natl Acad Sci USA 102:18497–18501. doi:10.1073/pnas.0509060102
Riera F (1980) Breves notas y primera cita del Espinoso (Gasterosteus aculeatus L.) en S’Albufera, Mallorca. Boll Soc Hist Nat Balears 24:109–111
Ryder OA (1986) Species conservation and systematics—the dilemma of subspecies. Trends Ecol Evol 1:9–10
Schluter D, Conte GL (2009) Genetics and ecological speciation. Proc Natl Acad Sci USA 106(Suppl 1):9955–9962. doi:10.1073/pnas.0901264106
Seehausen O, vanAlphen J, Witte F (1997) Cichlid fish diversity threatened by eutrophication that curbs sexual selection. Science 277:1808–1811
Spence R, Wootton RJ, Barber I et al (2013) Ecological causes of morphological evolution in the three-spined stickleback. Ecol Evol 3:1717–1726. doi:10.1002/ece3.581
Tamura K, Peterson D, Peterson N et al (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739. doi:10.1093/molbev/msr121
Taylor EB, Boughman JW, Groenenboom M et al (2006) Speciation in reverse: morphological and genetic evidence of the collapse of a three-spined stickleback (Gasterosteus aculeatus) species pair. Mol Ecol 15:343–355. doi:10.1111/j.1365-294X.2005.02794.x
Vonlanthen P, Bittner D, Hudson AG et al (2012) Eutrophication causes speciation reversal in whitefish adaptive radiations. Nature 482:357–362. doi:10.1038/nature10824
Watanabe K, Mori S, Nishida M (2003) Genetic relationships and origin of two geographic groups of the freshwater threespine stickleback, “hariyo”. Zool Sci 20:265–274. doi:10.2108/zsj.20.265
Whittaker RJ, Fernández-Palacios JM (2007) Island biogeography: ecology, evolution and conservation. Oxford University Press, Oxford
Acknowledgments
This work was partially supported by EAWAG action field project AquaDiverse to OS. KL was further supported by a Swiss National Science Foundation Early Postdoc. Mobility grant P2BEP3_152103. We thank Miguel Hermida, Rafał Bernaś, Flavio Orrù and David Marques for providing specimens and Helmut Wellendorf from the Museum of Natural History in Vienna for his assistance in obtaining phenotypic data for Sardinian specimens. Mélissa Lemoine, Joana Meier, Víctor Soria-Carrasco and two anonymous reviewers provided valuable comments on an earlier version of the manuscript.
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary material
Rights and permissions
About this article
Cite this article
Lucek, K., Seehausen, O. Distinctive insular forms of threespine stickleback (Gasterosteus aculeatus) from western Mediterranean islands. Conserv Genet 16, 1319–1333 (2015). https://doi.org/10.1007/s10592-015-0742-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10592-015-0742-0


