Skip to main content

Advertisement

Log in

Historical and contemporary demography of leaf-toed geckos (Phyllodactylidae: Phyllodactylus tuberculosus saxatilis) in the Mexican dry forest

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

Disentangling the relative influence of historical versus contemporary processes shaping the spatial distribution of genetic variation is critical if we are to effectively mitigate key biodiversity issues. We utilize a comprehensive approach based on different molecular marker types and analytical methods to understand the demographic consequences of recent habitat fragmentation in a spatially explicit context. We focus our efforts on native leaf-toed geckos (Phyllodactylus tuberculosus saxatilis) throughout fragmented habitat in the tropical dry forest of northern Mexico as recent evidence suggests that geographic ranges for these geckos may be much smaller than currently realized. However, no data are available regarding recent shifts in demographic trends and how these trends may correspond with recent fragmentation and introductions of non-native gecko species (Hemidactylus). Mitochondrial DNA sequences reveal substantial historical genetic divergence over a small geographic area (<40 km). We find evidence for an increase in contemporary versus historical migration rates based on 10 microsatellite loci, but evidence that many populations suffer from recent reductions in effective population sizes. Landscape genetic analyses find that contemporary migration rates are significantly more correlated with the landscape versus historical migration rates or mtDNA divergence, suggesting that individuals have altered their dispersal routes in response to recent habitat changes. Taken together, this study suggests that long-term female philopatry, recent habitat fragmentation, and possibly introductions of non-native gecko species all contribute to the demographic patterns and the high degree of differentiation observed over fine-spatial scales in Mexican leaf-toed geckos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Andersen LW, Born EW, Doidge DW, Gjertz I, Wiig Ø, Waples RS (2009) Genetic signals of historic and recent migration between sub-populations of Atlantic walrus Odobenus rosmarus rosmarus west and east of Greenland. Endan Species Res 9:197–211

    Article  Google Scholar 

  • Anderson CD, Epperson BK, Fortin MJ et al (2010) Considering spatial and temporal scale in landscape-genetic studies of gene flow. Mol Ecol 19:3565–3575

    Article  PubMed  Google Scholar 

  • Becerra JX (2005) Timing the origin and expansion of the Mexican tropical dry forest. Proc Natl Acad Sci USA 102:10919–10923

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Beerli P (2006) Comparison of Bayesian and maximum likelihood inference of population genetic parameters. Bioinformatics 22:341–345

    Article  CAS  PubMed  Google Scholar 

  • Beerli P (2008) Migrate documentation (version 3.0). Technical Report. http://popgen.sc.fsu.edu

  • Beerli P, Felsenstein J (2001) Maximum likelihood estimation of a migration matrix and effective population sizes in n subpopulations by using a coalescent approach. Proc Natl Acad Sci USA 98:4563–4568

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Blair C, Méndez de la Cruz FR, Ngo A, Lindell J, Lathrop A, Murphy RW (2009) Molecular phylogenetics and taxonomy of leaf-toed geckos (Phyllodactylidae: Phyllodactylus) inhabiting the peninsula of Baja California. Zootaxa 2027:28–42

    Google Scholar 

  • Blair C, Jiménez-Arcos VH, Méndez de la Cruz FR, Murphy RW (2013) Landscape genetics of leaf-toed geckos in the tropical dry forest of northern Mexico. PLoS ONE 8:e57433

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bohonak AJ, Vandergast AG (2011) The value of DNA sequence data for studying landscape genetics. Mol Ecol 20:2477–2479

    Article  PubMed  Google Scholar 

  • Burbrink FT (2010) Historical versus contemporary migration in fragmented populations. Mol Ecol 19:5321–5323

    Article  PubMed  Google Scholar 

  • Cartron JE, Ceballos G, Felger RS (2005) Biodiversity, ecosystems, and conservation in Northern Mexico. Oxford University Press, New York

    Google Scholar 

  • Castiglia R, García A, Bezerra AMR, Flores-Villela O, Gornung E (2009) Karyotipic diversification due to Robertsonian rearrangements in Phyllodactylus lanei Smith, 1935 (Squamata, Gekkonidae) from Mexico. Rendiconti Lincei 20:77–82

    Article  Google Scholar 

  • Chiucchi JE, Gibbs HL (2010) Similarity of contemporary and historical gene flow among highly fragmented populations of an endangered rattlesnake. Mol Ecol 19:5345–5358

    Article  PubMed  Google Scholar 

  • Cornuet JM, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144:2001–2014

    PubMed Central  CAS  PubMed  Google Scholar 

  • Crispo E, Moore JS, Lee-Yaw JA, Gray SM, Haller BC (2011) Broken barriers: human-induced changes to gene flow and introgression in animals. BioEssays 33:508–518

    Article  PubMed  Google Scholar 

  • Cristescu R, Sherwin WB, Handasyde K, Cahill V, Cooper DW (2010) Detecting bottlenecks using Bottleneck 1.2.02 in wild populations: the importance of the microsatellite structure. Conserv Genet 11:1043–1049

    Article  Google Scholar 

  • Cushman SA, McKelvey KS, Hayden J, Schwartz MK (2006) Gene flow in complex landscapes: testing multiple hypotheses with causal modeling. Am Nat 168:486–499

    Article  PubMed  Google Scholar 

  • Di Rienzo A, Peterson AC, Garza JC et al (1994) Mutational processes of simple-sequence repeat loci in human populations. Proc Natl Acad Sci USA 91:3166–3170

    Article  PubMed Central  PubMed  Google Scholar 

  • Dixon JR (1964) The systematics and distribution of lizards of the genus Phyllodactylus in North and Central America. N M State Univ Res Cent, Sci Bull 64–1:1–139

    Google Scholar 

  • Dyer RJ, Nason JD, Garrick RC (2010) Landscape modeling of gene flow: improved power using conditional genetic distance derived from the topology of population networks. Mol Ecol 19:3746–3759

    Article  PubMed  Google Scholar 

  • Ellegren H (2004) Microsatellites: simple sequences with complex evolution. Nat Rev Genet 5:435–445

    Article  CAS  PubMed  Google Scholar 

  • Ewers RM, Didham RK (2005) Confounding factors in the detection of species responses to habitat fragmentation. Biol Rev 81:117–142

    Article  PubMed  Google Scholar 

  • Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Annu Rev Ecol Syst 34:487–515

    Article  Google Scholar 

  • Gamble T, Bauer AM, Greenbaum E, Jackman TR (2008) Out of the blue: a novel, trans-Atlantic clade of geckos (Gekkota, Squamata). Zool Scripta 37:355–366

    Article  Google Scholar 

  • García A (2006) Using ecological niche modeling to identify diversity hotspots for the herpetofauna of Pacific lowlands and adjacent interior valleys of Mexico. Biol Conserv 130:25–46

    Article  Google Scholar 

  • Garza JC, Williamson EG (2001) Detection of reduction in population size using data from microsatellite loci. Mol Ecol 10:305–318

    Article  CAS  PubMed  Google Scholar 

  • Goldberg CS, Waits LP (2010) Comparative landscape genetics of two pond-breeding amphibian species in a highly modified agricultural landscape. Mol Ecol 19:3650–3663

    Article  PubMed  Google Scholar 

  • Goslee S, Urban D (2008) Dissimilarity-based functions for ecological analysis. CRAN repository. Available from http://cran.r-project.org/web/packages/ecodist/

  • Gübitz T, Thorpe RS, Malhotra A (2000) Phylogeography and natural selection in the Tanerife gecko Tarentola delalandii: testing historical and adaptive hypotheses. Mol Ecol 9:1213–1221

    Article  PubMed  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Hill WG (1981) Estimation of effective population size from data on linkage disequilibrium. Genet Res 38:209–216

    Article  Google Scholar 

  • Irwin DE (2002) Phylogeographic breaks without barriers to gene flow. Evolution 56:2383–2394

    Article  PubMed  Google Scholar 

  • Janzen DH (1988) Tropical dry forests: the most endangered major tropical ecosystem. In: Wilson EO (ed) Biodiversity. National Academy Press, Washington, pp 130–137

    Google Scholar 

  • Jensen JL, Bohonak AJ, Kelley ST (2005) Isolation by distance, web service. BMC Genet 6:13. v.3.16. http://ibdws.sdsu.edu/

  • Kaspidis P, Magoulas A, Mylonas M, Zouros E (2005) The phylogeography of the gecko Cyrtopodion kotschyi (Reptilia: Gekkonidae) in the Aegean archipelago. Mol Phylogenet Evol 35:612–623

  • Koscinski D, Yates AG, Handford P, Lougheed SC (2009) Effects of landscape and history on diversification of a montane, stream-breeding amphibian. J Biogeography 36:255–265

    Article  Google Scholar 

  • Legendre P, Lapointe FJ, Casgrain P (1994) Modeling brain evolution from behaviour: a permutational regression approach. Evolution 48:1487–1499

    Article  Google Scholar 

  • Lichstein JW (2007) Multiple regression on distance matrices: a multivariate spatial analysis tool. Plant Ecol 188:117–131

    Article  Google Scholar 

  • Luikart G, Allendorf FW, Cornuet JM et al (1998) Distortion of allele frequency distributions provides a test for recent population bottlenecks. J Hered 89:238–247

    Article  CAS  PubMed  Google Scholar 

  • Manel S, Schwartz MK, Luikart G, Taberlet P (2003) Landscape genetics: combining landscape ecology and population genetics. Trends Ecol Evol 18:189–197

    Article  Google Scholar 

  • Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220

  • Murphy PG, Lugo AE (1996) Ecology of tropical dry forest. Ann Rev Ecol Syst 17:67–88

    Article  Google Scholar 

  • Murphy RW, Blair C, Méndez de la Cruz FR (2009) A new species of leaf-toed gecko, genus Phyllodactylus (Squamata: Gekkota: Phyllodactylidae) from Guerrero, Mexico. S Am J Herpetol 4:17–24

    Article  Google Scholar 

  • Muscarella RA, Murray KL, Ortt D, Russell AL, Fleming TH (2011) Exploring demographic, physical, and historical explanations for the genetic structure of two lineages of Greater Antillean bats. PLoS ONE 6:e17704

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 409:853–858

    Article  Google Scholar 

  • Myska P (2007) Viva Natura: Field Guide to the Amphibians, Reptiles, Birds, and Mammals of Western Mexico. Peter Myska, Viva natura

  • Pennington TR, Prado DE, Pendry CA (2000) Neotropical seasonally dry forests and Quaternary vegetation changes. J Biogeography 27:261–273

    Article  Google Scholar 

  • Piry S, Luikart G, Cornuet JM (1999) Bottleneck: a computer program for detecting recent reductions in effective population size using allele frequency data. J Hered 90:502–503

    Article  Google Scholar 

  • Rambaut A, Drummond AJ (2007) Tracer v1.6.1. http://beast.bio.ed.ac.uk/Tracer

  • Rato C, Carranza S, Harris DJ (2011) When selection deceives phylogeographic interpretation: the case of the Mediterranean house gecko, Hemidactylus turcius (Linnaeus, 1758). Mol Phylogenet Evol 58:365–373

    Article  CAS  PubMed  Google Scholar 

  • Ricketts TH (2001) The matrix matters: effective isolation in fragmented landscapes. Am Nat 158:87–99

    Article  CAS  PubMed  Google Scholar 

  • Robichaux RH, Yetman DA (2000) The tropical deciduous forest of alamos. Biodiversity of a threatened ecosystem in Mexico. The University of Arizona Press, Tucson

    Google Scholar 

  • Ross KG, Krieger MJB, Keller L, Shoemaker DD (2007) Genetic variation and structure in native populations of the fire ant Solenopsis invicta: evolutionary and demographic implications. Biol J Linnean Soc 92:541–560

    Article  Google Scholar 

  • Rozas J, Sanchez-Delbarrio JC, Messeguer X, Rozas R (2003) DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19:2496–2497

    Article  CAS  PubMed  Google Scholar 

  • Sanderson EW, Jaiteh M, Levy MA et al (2002) The human footprint and the last of the wild. Bioscience 52:891–904

    Article  Google Scholar 

  • Schmidt JI, Hundertmark KJ, Bowyer TR, McCracken KG (2009) Population structure and genetic diversity of moose in Alaska. J Hered 100:170–180

    Article  CAS  PubMed  Google Scholar 

  • Shah VB, McRae BH (2008) Circuitscape: a tool for landscape ecology. In: Varoquaux G, Vaught T, Millman J (eds). Proceedings of the 7th Python in Science Conference (SciPy 2008), pp. 62–66.

  • Sork VL, Waits LP (2010) Contributions of landscape genetics—approaches, insights, and future potential. Mol Ecol 19:3489–3495

    Article  PubMed  Google Scholar 

  • Spear SF, Storfer A (2008) Landscape genetic structure of coastal tailed frogs (Ascaphus truei) in protected versus managed forests. Mol Ecol 17:4642–4656

    Article  PubMed  Google Scholar 

  • Spear SF, Peterson CR, Matocq M, Storfer A (2005) Landscape genetics of the blotched tiger salamander (Ambystoma tigrinum melanostictum). Mol Ecol 14:2553–2564

    Article  CAS  PubMed  Google Scholar 

  • Storfer A, Murphy MA, Spear SP, Holderegger R, Waits LP (2010) Landscape genetics: where are we now? Mol Ecol 19:3496–3514

    Article  PubMed  Google Scholar 

  • Trejo I, Dirzo R (2000) Deforestation of seasonally dry tropical forest: a national and local analysis in Mexico. Biol Conserv 94:133–142

    Article  Google Scholar 

  • Vandergast AG, Bohonak AJ, Weissman DB, Fisher RN (2007) Understanding the genetic effects of recent habitat fragmentation in the context of evolutionary history: phylogeography and landscape genetics of a southern California endemic Jerusalem cricket (Orthoptera: Stenopelmatidae: Stenopelmatus). Mol Ecol 16:977–992

    Article  CAS  PubMed  Google Scholar 

  • Vignieri SN (2005) Streams over mountains: influence of riparian connectivity on gene flow in the Pacific jumping mouse (Zapus trinotatus). Mol Ecol 14:1925–1937

    Article  CAS  PubMed  Google Scholar 

  • Wang IJ (2010) Recognizing the temporal distinctions between landscape genetics and phylogeography. Mol Ecol 19:2605–2608

    Article  PubMed  Google Scholar 

  • Wang IJ (2011) Choosing appropriate genetic markers and analytical methods for testing landscape genetic hypotheses. Mol Ecol 20:2480–2482

    Article  Google Scholar 

  • Wang IJ, Savage WK, Shaffer BH (2009) Landscape genetics and least-cost path analysis reveal unexpected dispersal routes in the California tiger salamander (Ambystoma californiense). Mol Ecol 18:1365–1374

    Article  PubMed  Google Scholar 

  • Waples RS (2006) A bias correction for estimates of effective population size based on linkage disequilibrium at unlinked gene loci. Conserv Genet 7:167–184

    Article  Google Scholar 

  • Waples RS, Do C (2008) Ldne: a program for estimating effective population size from data on linkage disequilibrium. Mol Ecol Resour 8:753–756

    Article  PubMed  Google Scholar 

  • Waples RS, Do C (2010) Linkage disequilibrium estimates of contemporary N e using highly variable genetic markers: a largely untapped resource for applied conservation and evolution. Evol Appl 3:244–262

    Article  PubMed Central  PubMed  Google Scholar 

  • Wilson GA, Rannala B (2003) Bayesian inference of recent migration rates using multilocus genotypes. Genetics 163:1177–1191

    PubMed Central  PubMed  Google Scholar 

  • Zellmer AJ, Knowles LL (2009) Disentangling the effects of historic versus contemporary landscape structure on population genetic divergence. Mol Ecol 18:3593–3602

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank A. Ngo, D. Dewsbury, I. Conflitti, and C. Davy for providing insightful comments on previous drafts of the manuscript. This research was supported by a discovery grant from the Natural Sciences and Engineering Research Council of Canada and by the Royal Ontario Museum Board of Governors to RWM. Support was also provided from a Theodore Roosevelt Memorial grant through the American Museum of Natural History (CB). Invaluable field assistance was provided by Martin G. Figueroa, Norberto Martinez Mendez, Rafael Lara Resendiz and Arabel Escalona López. Fieldwork in reserves was conducted under the permit issued to Dr. Francisco Molina Freaner. Stephanie A. Meyer provided invaluable advice and field logistics. All research was conducted using approved Animal Use Protocols. All necessary permits (SGPA/DGVS/1995/08, SGPA/DGVS/01493/09, SGPA/DGVS/3220/10) were obtained from SEMARNAT through the Universidad Nacional Autónoma de México (UNAM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher Blair.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 328 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blair, C., Jiménez Arcos, V.H., de la Cruz, F.R.M. et al. Historical and contemporary demography of leaf-toed geckos (Phyllodactylidae: Phyllodactylus tuberculosus saxatilis) in the Mexican dry forest. Conserv Genet 16, 419–429 (2015). https://doi.org/10.1007/s10592-014-0668-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-014-0668-y

Keywords

Navigation