Skip to main content

Advertisement

Log in

Signatures of natural and unnatural selection: evidence from an immune system gene in African buffalo

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

Pathogens often have negative effects on wildlife populations, and disease management strategies are important for mitigating opportunities for pathogen transmission. Bovine tuberculosis (Mycobacterium bovis; BTB) is widespread among African buffalo (Syncerus caffer) populations in southern Africa, and strategies for managing this disease vary. In two high profile parks, Kruger National Park (KNP) and Hluhluwe-iMfolozi Park (HIP), BTB is either not actively managed (KNP) or managed using a test-and-cull program (HIP). Exploiting this variation in management tactics, we investigated potential evolutionary consequences of BTB and BTB management on buffalo by examining genetic diversity at IFNG, a locus which codes for interferon gamma, a signaling molecule vital in the immune response to BTB. Both heterozygosity and allelic richness were significantly and positively correlated with chromosomal distance from IFNG in KNP, suggesting that directional selection is acting on IFNG among buffalo in this park. While we did not see the same reduction in genetic variation around IFNG in HIP, we found evidence of a recent bottleneck, which might have eroded this signature due to genome-wide reductions in diversity. In KNP, alleles at IFNG were in significant gametic disequilibrium at both short and long chromosomal distances, but no statistically significant gametic disequilibrium was associated with IFNG in HIP. When, we compared genetic diversity between culled and non-culled subsets of HIP animals, we also found that individuals in the culled group had more rare alleles than those in the non-culled group, and that these rare alleles occurred at higher frequency. The observed excess of rare alleles in culled buffalo and the patterns of gametic disequilibrium in HIP suggest that management may be eroding immunogenetic diversity, disrupting haplotype associations in this population. Taken together, our results suggest that both infectious diseases and disease management strategies can influence host genetic diversity with important evolutionary consequences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Acevedo-Whitehouse K, Cunningham A (2006) Is MHC enough for understanding wildlife immunogenetics? TREE 21(8):433–438

    PubMed  Google Scholar 

  • Allendorf FW, Hard JJ (2009) Human-induced evolution caused by unnatural selection through harvest of wild animals. PNAS 106:9987–9994

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Altizer S, Harvell D, Freidle E (2003) Rapid evolutionary dynamics and disease threats to biodiversity. TREE 18(11):589–596

    Google Scholar 

  • Barendse W (2002) Development and commercialization of a genetic marker for marbling of beef in cattle: a case study. Intellectual property rights animal breeding and genetics., pp 197–212

    Chapter  Google Scholar 

  • Bollmer JL, Ruder EA, Johnson JA, Eimes JA, Dunn PO (2011) Drift and selection influence geographic variation at immune loci of prairie-chickens. Mol Ecol 20:4695–4706

    Article  PubMed  Google Scholar 

  • Bowen WD (2013) Marine mammal culling programs: review of effects on predator and prey populations. Mamm Rev 43:207–220

    Article  Google Scholar 

  • Bradley LM, Dalton DK, Croft M (1996) A direct role of IFN-gamma in regulation of TH1 cell development. J Immunol 157(4):1350–1358

    CAS  PubMed  Google Scholar 

  • Bream JH, Carrington M, O’Toole S, Dean M, Gerrard B, Shin HD, Kosack D, Modi W, Young HA, Smith MW (2000) Polymorphisms of the human IFNG gene noncoding regions. Immunogenetics 51(1):50–58

    Article  CAS  PubMed  Google Scholar 

  • Chauvenet ALM, Durant SM, Hilborn R, Pettorelli N (2011) Unintended consequences of conservation actions: managing diseases in complex ecosystems. PLoS One. doi:10.1371/journal.pone.0028671

    PubMed Central  PubMed  Google Scholar 

  • Coltman DW, Bowen WD, Wright JM (1999) A multivariate analysis of phenotype and paternity in male harbor seals, Phoca vitulina, at Sable Island, Nova Scotia. Behav Ecol 10:169–177

    Article  Google Scholar 

  • Coltman DW, Wilson K, Pilkington JG, Stear MJ, Pemberton JM (2001) A microsatellite polymorphism in the gamma interferon gene is associated with resistance to gastrointestinal nematodes in a naturally-parasitized population of Soay sheep. Parasitology 122(5):571–582

    Article  CAS  PubMed  Google Scholar 

  • Cornuet J-M, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144(4):2001–2014

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cousins DV, Florisson N (2005) A review of tests available for use in the diagnosis of tuberculosis in nonbovine species. Rev Sci Tech Off Int Epiz 24(3):1039–1059

  • Cross PC, Drewe J, Patrek V, Pearce G, Samuel MD, Delahay RJ (2009) Host population structure and implications for disease management. In: Delahay RJ, Smith GC, Hutchings MR (eds) Management of disease in wild mammals. Springer, Tokyo, pp 9–30

    Chapter  Google Scholar 

  • de Garine-Wichatitsky M, Caron A, Kock R, Tschopp R, Munyeme M, Hofmeyr M, Michel A (2013) A review of bovine tuberculosis at the wildlife-livestock-human interface in sub-Saharan Africa. Epidemiol Infect 141:1342–1356

    Article  PubMed  Google Scholar 

  • Donnelly CA, Woodroffe R, Cox DR, Bourne FJ, Gettinby G, LeFevre AM, McInerney JP, Morrison WI (2003) Impact of localized badger culling on TB incidence in British cattle. Nature 426:834–837

    Article  CAS  PubMed  Google Scholar 

  • Donnelly CA, Woodroffe R, Cox DR, Bourne FJ, Cheeseman CL, Clifton-Hadley RS, Wei G, Gettinby G, Gilks P, Jenkins H, Johnston WT, LeFevre AM, McInerney JP, Morrison WI (2006) Positive and negative effects of widespread culling on tuberculosis on cattle. Nature 439(16):843–846

    CAS  PubMed  Google Scholar 

  • Downing T, Cormican P, O’Farrelly C, Bradley D, Lloyd A (2009) Evidence of the adaptive evolution of immune genes in chicken. BMC Res Notes 2(1):254

    Article  PubMed Central  PubMed  Google Scholar 

  • Ezenwa VO, Etienne RS, Luikart G, Beja-Pereira A, Jolles AE (2010) Hidden consequences of living in a wormy world: nematode-induced immune suppression facilitates tuberculosis invasion in African buffalo. Am Nat 176(5):619–625

    Article  Google Scholar 

  • Fitzgerald SD, Kaneene JB (2013) Wildlife reservoirs of bovine tuberculosis worldwide: hosts, pathology, surveillance, and control. Vet Pathol 50(3):488–499

    Article  CAS  PubMed  Google Scholar 

  • Frere CH, Prentis PJ, Gilding EK, Mudge AM, Cruickshank A, Godwin ID (2011) Lack of low frequency variants masks patterns of non-neutral evolution following domestication. PLoS One 8:e23041

    Article  Google Scholar 

  • Goodchild M, Sahu S, Wares F, Dewan P, Shukla RS, Chauhan LS, Floyd K (2011) A cost-benfit analysis of scaling up tuberculosis control in India. Int J Tuberc Lung Dis 15(3):358–362

    CAS  PubMed  Google Scholar 

  • Goudet J (2001) FSTAT: a computer program to calculate F-statistics. J Hered 86(6):485–486

    Google Scholar 

  • Groenen MAM, Dijkhof RJM, ban der Peol JJ (1995) Characterization of a GlyCAM1-like gene (glycosylation-dependent cell adhesion molecule 1) which is highly and specifically expressed in the lactating bovine mammary gland. Gene 158(2):189–195

    Article  CAS  PubMed  Google Scholar 

  • Harris RB, Wall WA, Allendorf FW (2002) Genetic consequences of hunting: what do we know and what should we do? Wildl Soc B 30(2):634–643

    Google Scholar 

  • Hedrick PW (2011) Rapid decrease in horn size of bighorn sheep: environmental decline, inbreeding depression, or evolutionary response to trophy hunting? J Hered 2011:1–12

    Google Scholar 

  • Ihle S, Ravaoarimanana I, Thomas M, Tautz D (2006) An analysis of signatures of selective sweeps in natural populations of the house mouse. Mol Biol Evol 23(4):790–797

    Article  CAS  PubMed  Google Scholar 

  • Jolles AE (2007) Population biology of African buffalo (Syncerus caffer) at Hluhluwe-iMfolozi Park, South Africa. Afr J Ecol 45:398–406

    Article  Google Scholar 

  • Jolles AE, Cooper DV, Levin SA (2005) Hidden effects of chronic tuberculosis in African buffalo. Ecology 86(9):2258–2264

    Article  Google Scholar 

  • Jolles AE, Etienne RS, Olff H (2006) Independent and competing disease risks: implications for host populations in variable environments. Am Nat 167(5):745–757

    Article  PubMed  Google Scholar 

  • Jolles AE, Ezenwa VO, Etienne RS, Turner WC, Olff H (unpublished) Interactions between macroparasites and microparasites drive infection patterns in free-ranging African buffalo

  • Joseph MB, Mihaljevic JR, Arellano AL, Kueneman JG, Preston DL, Cross PC, Johnson PTJ (2013) Taming wildlife disease: bridging the gap between science and management. J Appl Ecol 50(3):702–712

    Article  Google Scholar 

  • Kadarmideen HN, Ali AA, Thomson PC, Muller B, Zinsstag J (2011) Polymorphisms of the SLC11A1 gene and resistance to bovine tuberculosis in African Zebu cattle. Anim Genet 42(6):656–658

    Article  CAS  PubMed  Google Scholar 

  • Kappes SM, Keele JW, Stone RT, McGraw RA, Sonstegard TS, Smith TP, Lopez-Corrales NL, Beattie CW (1997) Genome Res 7(3):235–249

    Article  CAS  PubMed  Google Scholar 

  • Kimura M, Ohta T (1978) Stepwise mutation model and distribution of allelic frequencies in a finite population. PNAS 75(6):2868–2872

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Koskella B, Lively CM (2009) Evidence for negative frequency-dependent selection during experimental coevolution of a freshwater snail and a sterilizing trematode. Evolution 63(9):2213–2221

    Article  PubMed  Google Scholar 

  • Koskella B, Lin DM, Buckling A, Thompson JN (2012) The costs of evolving resistance in heterogeneous parasite environments. Proc R Soc B 279(1735):1896–1903

    Article  PubMed Central  PubMed  Google Scholar 

  • Koyanagi M, Jerns JA, Chung L, Zhang Y, Moloveanu T, Malik HS, Bix M (2010) Diversifying selection and functional analysis of interleukin-4 suggests antagonism-driven evolution at receptor-binding interfaces. BMC Evol Biol 10:223–236

    Article  PubMed Central  PubMed  Google Scholar 

  • Lankau RA, Strauss SY (2010) Newly rare or newly common: evolutionary feedbacks through changes in population density and relative species abundance, and their management implications. Evol Appl 4:338–353

    Article  Google Scholar 

  • Leung TLF, King KC, Wolinska J (2012) Escape from the Red Queen: an overlooked scenario in coevolutionary studies. Oikos 121(5):641–645

    Article  Google Scholar 

  • Lewontin RC (1964) The interaction of selection and linkage. I. General considerations; heterotic models. Genetics 49(1):49–67

  • Lewontin RC, Kojima K (1960) The evolutionary dynamics of complex polymorphisms. Evolution 14(4):458–472

  • Liu K, Muse SV (2005) PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics 21(9):2128–2129

    Article  CAS  PubMed  Google Scholar 

  • Llewellyn D, Thompson MB, Brown GP, Phillips BL, Shine R (2012) Reduced investment in immune function in invasion-front populations of the cane toad (Rhinella marina) in Australia. Biol Invasions 14:999–1008

    Article  Google Scholar 

  • Luikart G, Cornuet J-M (1998) Empirical evaluation of a test for detecting recent historical population bottlenecks. Conserv Biol 12:228–237

    Article  Google Scholar 

  • Maddox JF, Davies KP, Crawford AM, Hulme DJ, Vaiman D, Cribiu EP, Freking BA, Beh KJ, Cockett NE, Kang N, Riffkin CD, Drinkwater R, Moore SS, Dodds KG, Lumsden JM, van Stijn TC, Phua SH, Adelson DL, Burkin HR, Broom JE, Buitkamp J, Cambridge L, Cushwa WT, Gerard E, Galloway SM, Harrison B, Hawken RJ, Hiendleder S, Henry HM, Medrano JF, Paterson KA, Schibler L, Stone RT, van Hest B (2001) An enhanced linkage map of the sheep genome comprising more than 1000 loci. Genome Res 11(7):1275–1289

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Makinen HS, Cano JM, Merila J (2008) Identifying footprints of directional and balancing selection in marine and freshwater three-spined stickleback (Gasterosteus aculeatus) populations. Mol Ecol 17(15):3565–3582

    Article  CAS  PubMed  Google Scholar 

  • Maruyama T, Fuerst PA (1984) Population bottlenecks and nonequilibrium models in population genetics. I. Allele numbers when populations evolve from zero variability. Genetics 108(3):745–763

    PubMed Central  CAS  PubMed  Google Scholar 

  • McCallum H (2008) Tasmanian devil facial tumour disease: lessons for conservation biology. TREE 23(11):631–637

    PubMed  Google Scholar 

  • McTaggart S, Obbard DJ, Conlon C, Little TJ (2012) Immune genes undergo more adaptive evolution than non-immune system genes in Daphnia pulex. BMC Evol Biol 12:63. doi:10.1186/1471-2148-12-63

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Michel AL, Bengis RG, Keet DF, Hofmeyr M, deKlerk LM, Cross PC, Jolles AE, Cooper D, Whyte IJ, Buss P, Godfroid J (2006) Wildlife tuberculosis in South African conservation areas: implications and challenges. Vet Microbiol 112:91–100

    Article  CAS  PubMed  Google Scholar 

  • Michel AL, Muller B, van Helden PD (2010) Mycobacterium bovis at the animal-human interface: a problem or not? Vet Microbiol 140:371–381

    Article  PubMed  Google Scholar 

  • Myerstud A (2011) Selective harvesting of large mammals: how often does it result in directional selection? J Appl Ecol 48(4):827–834

    Article  Google Scholar 

  • Myerstud A, Bischof R (2010) Can compensatory culling offset undesirable evolutionary consequences of trophy hunting? J Anim Ecol 79(1):148–160

    Article  Google Scholar 

  • Nei M (1987) Molecular Evolutionary Genetics. Columbia University Press, New York

    Google Scholar 

  • Palermo S, Capra E, Torremorell M, Dolzan M, Davoli R, Haley CS, Giuffra E (2009) Toll-like receptor 4 genetic diversity among pig populations. Anim Genet 40(3):289–299

    Article  CAS  PubMed  Google Scholar 

  • Pollock NR, Campos-Neta A, Kashino S, Napalitano D, Behar SM, Shin D, Sloutsky A, Joshi S, Guillet J, Wong M, Nardell E (2008) Discordant quantiFERON-TB Gold tests among US healthcare workers with increased risk of latent tuberculosis infection: a problem or solution? Infect Control Hosp Epidemiol 29(9):878–886

    Article  PubMed Central  PubMed  Google Scholar 

  • Pope LC, Butlin RK, Wilson GJ, Woodroffe R, Erven K, Conyers CM, Franklin T, Delahay RJ, Cheeseman CL, Burke T (2007) Genetic evidence that culling increases badger movement: implications for the spread of bovine tuberculosis. Mol Ecol 16(23):4919–4929

    Article  PubMed  Google Scholar 

  • Raymond M, Rousset F (1995) GENEPOP: population genetics software for exact tests and ecumenicism. J Hered 86(3):248–249

    Google Scholar 

  • Renehan AG, Zwahlen M, Minder C, O’Dwyer ST, Shalet SM, Egger M (2004) Insulin-like growth (IGF)-I, IGF binding protein-3, and cancer risk: systematic review and meta-regression analysis. Lancet 363(19):1346–1353

    Article  CAS  PubMed  Google Scholar 

  • Renwick AR, White PCL, Bengis RG (2007) Bovine tuberculosis in southern African wildlife: multi-species host-pathogen system. Epidemiol Infect 135(4):529–540

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Robinson SJ, Samuel MD, O’Rourke KI, Johnson CJ (2012) The role of genetics in chronic wasting disease of North American cervids. Prion 6(2):153–162

    Article  CAS  PubMed  Google Scholar 

  • Ryan TJ, Buddle BM, de Lisle GW (2000) An evaluation of the gamma interferon test for detecting tuberculosis in cattle 8 to 28 days after tuberculin skin testing. Res Vet Sci 69:57–61

    Article  CAS  PubMed  Google Scholar 

  • Sackett LC, Collinge SK, Martin AP (2013) Do pathogens reduce genetic diversity of their hosts? Variable effects of sylvatic plague in black-tailed prairie dogs. Mol Ecol 22(9):2441–2455

    Article  PubMed  Google Scholar 

  • Schneider S, Roessli D, Excoffier L (2000) Arlequin: an integrated software package for population genetics data analysis. Evol Bioinform 1:47

    Google Scholar 

  • Shim E, Galvani AP (2009) Evolutionary repercussions of avian culling on host resistance and influenza virulence. PLoS One 4(5):e5503

    Article  PubMed Central  PubMed  Google Scholar 

  • Singleton GR, Brown PR, Jacob J, Aplin KP, Sudaramaji (2007) Unwanted and unintended effects of culling: a case for ecologically-based rodent management. Integr Zool 2:247–257

    Article  PubMed  Google Scholar 

  • Smith KF, Acevedo-Whitehouse K, Pederson AB (2009) The role of infectious diseases in biological conservation. Anim Conserv 12:1–12

    Article  Google Scholar 

  • Sommer S (2005) The importance of immune gene variability (MHC) in evolutionary ecology and conservation. Front Zool 2:16–34

    Article  PubMed Central  PubMed  Google Scholar 

  • Spurgin LG, Richardson DS (2010) How pathogens drive genetic diversity: MHC, mechanisms and misunderstandings. Proc R Soc B 277:979–988

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Thrall PJ, Burdon JJ (2003) Evolution of virulence in a plant host-pathogen metapopulation. Science 299:1735–1737

    Article  CAS  PubMed  Google Scholar 

  • Tocyap ML, Azar N, Chen T, Wiggs J (2006) Clinical and molecular characterization of a patient with an interstitial deletion of chromosome 12q15-q23 and peripheral corneal abnormalities. Am J Opthalmol 141(3):566–567

    Article  CAS  Google Scholar 

  • Tonteri A, Vasemagi A, Lumme J, Primmer C (2010) Beyond MHC: signals of elevated selection pressure on Atlantic salmon (Salmo salar) immune-relevant loci. Mol Ecol 19(7):1273–1282

    Article  CAS  PubMed  Google Scholar 

  • Tschirren B, Raberg L, Westerdahl H (2011) Signatures of selection acting on the innate immunity gene Toll-like receptor 2 (TLR2) during the evolutionary history of rodents. J Evol Biol 24(6):1232–1240

    Article  CAS  PubMed  Google Scholar 

  • van Oosterhout C, Hutchinson W, Wills D, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4(3):535–538

    Article  Google Scholar 

  • Waters WR, Tacker TC, Nonnecke BJ, Palmer MV, Schiller I, Oesch B, Vordermeier HM, Silva E, Estes DM (2012) Evaluation of Gamma Interferon (IFN-γ)-Induced protein 10 responses for detection of cattle infected with Mycobaterium bovis: comparisons to IFN-γ responses. Clin Vaccine Immunol 19(3):346–351

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • White PJ, Wallen RL, Geremia C, Treanor JJ, Blanton DW (2011) Management of Yellowstone bison and brucellosis transmission risk—implications for conservation and restoration. Biol Conserv 144(5):1322–1334

    Article  Google Scholar 

  • Wood PR, Corner LA, Rotherl JS, Baldock C, Jones SL, Cousins DB, McCormick BS, Francis BR, Creeper J, Tweddle NE (1991) Field comparison of the interferon-gamma assay and the intradermal tuberculin test for the diagnosis of bovine tuberculosis. Aust Vet J 68(9):286–290

    Article  CAS  PubMed  Google Scholar 

  • Woodroffe R (1999) Managing disease threats to wild mammals. Anim Conserv 2:185–193

    Article  Google Scholar 

  • Woodroffe R, Donnelly CA, Cox DR, Bourne FJ, Cheeseman CL, Delahay RJ, Gettinby G, McInerney JP, Morrison WI (2006) Effects of culling on badger Meles meles spatial organization: implications for the control of bovine tuberculosis. J Appl Ecol 43(1):1–10

    Article  Google Scholar 

  • Woodroffe R, Donnelly CA, Wei G, Cox DR, Bourne FJ, Burke T, Butlin RK, Cheeseman CL, Gettinby G, Gilks P, Heges S, Jenkins HE, Johnston WT, McInerney JP, Morrison WI, Pope LC (2009a) Social group size affects Mycobacterium bovis infection in European badgers (Meles meles). J Anim Ecol 78:818–827

    Article  PubMed  Google Scholar 

  • Woodroffe R, Donnelly CA, Cox DR, Gilks P, Jenkins HE, Johnston WT, LeFevre AM, Bourne FJ, Cheeseman CL, Clifton-Hadley RS, Gettinby G, Hewinson RG, McInerney JP, Mitchell AP, Morrison WI, Watkins GH (2009b) Bovine tuberculosis in cattle and badgers in localized culling areas. J Wildl Dis 45(1):128–143

    Article  PubMed  Google Scholar 

  • Yang F, Eckardt S, Leu NA, McLaughlin KJ, Wang PJ (2008) Mouse TEX15 is essential for double-strand break repair and chromosomal synapse during male meiosis. J Cell Biol 180(4):673–679

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Kwazulu-Natal Wildlife Service, Kwazulu-Natal State Veterinary Service, and South Africa National Parks Veterinary Services for facilitating this research. In particular, D. Cooper, P. Buss, and M. Hofmeyr provided invaluable assistance. We thank Matt Gruber for his assistance in the lab. Animal protocols used in this study were approved by the University of Georgia, the University of Montana and Oregon State University Animal Care and Use Committees. This work was supported by the National Science Foundation Ecology of Infectious Diseases Program (DEB-1102493/EF-0723928, EF-0723918), an NSF Small Grant for Exploratory Research (DEB-0541762, DEB-0541981) and a University of Montana Faculty Research Grant.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to K. E. Lane-deGraaf or V. O. Ezenwa.

Additional information

K. E. Lane-deGraaf and S. J. Amish have contributed equally to this paper.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 34 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lane-deGraaf, K.E., Amish, S.J., Gardipee, F. et al. Signatures of natural and unnatural selection: evidence from an immune system gene in African buffalo. Conserv Genet 16, 289–300 (2015). https://doi.org/10.1007/s10592-014-0658-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-014-0658-0

Keywords

Navigation